matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMaxima Minima
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Maxima Minima
Maxima Minima < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maxima Minima: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:12 Do 13.01.2011
Autor: Shoegirl

Aufgabe
Vorgelegt sei die Funktion
g(x,y)= [mm] x^2-xy+y^2+12x-9y+1 [/mm] , x € [mm] R^2 [/mm]

Untersuchen Sie die Funktion auf lokale Minima und Maxima.

Also ich habe das Verfahren rausgesucht.
Als erstes muss man die erste ABleitung bilden.
Hier habe ich:
2x-1+2y+13-10
Stimmt das?
Dann soll man die erste Ableitnung =0 setzen.
2x-1+2y+13-10=0   /+1
2x+2y+3=-1   /-3
2x+2y=-2 /: 2
x+y= 0


Hier bräuchte man ja eigentlich schon mehrere Werte und da ich nur das raus habe..... Irgendwo muss doch schon was falsch sein. In Ableitungen bin ich immer schlecht, also denke ich mal das dort der Fehler liegt. Ich habe aber alle Sonderregeln durchgesehen und keine gefunden die hier passt :(

        
Bezug
Maxima Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 13.01.2011
Autor: qsxqsx

Hallo,

Wie wärs wenn du dir mal zuerst Überlegst was du da genau tust?
Du hast eine Funktion [mm] \IR^{2} \mapsto \IR. [/mm] Man kann sich das gut Vorstellen als Fläche in einem Koordinatensystem x,y,z. Wobei g(x,y) = z ist. Du suchst Extrema für z.

Jetzt schreibst du da einfach 1. Ableitung bilden: Nach was willst du denn ableiten? Nach x, nach y nach x und y nacheinander?!

Gruss

Bezug
                
Bezug
Maxima Minima: rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:53 So 16.01.2011
Autor: Shoegirl

Aufgabe
siehe Anfang der Frage

Ich habe nach beidem gleichzeitig abgeleitet, da ja wie du schon sagst nach z gesucht ist und das setzt sich aus beiden zusammen...Ich hätte jetzt nicht gewusst wie man das anders machen kann.

Bezug
                        
Bezug
Maxima Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 So 16.01.2011
Autor: qsxqsx

Hallo

...wir haben g(x,y) = z = $ [mm] x^2-xy+y^2+12x-9y+1 [/mm] $

Du leitest nach g(x,y) nach x ab. Sagen wir w(x,y) = [mm] \bruch{\partial g(x,y)}{\partial x}. [/mm] w(x,y) ist die Änderung von der Funktion g(x,y) nach x. Wenn du w(x,y) jetzt nach y ableitest, so erhälst du die Änderung nach y von der Änderung nach x. Brauchst du das?
Nein. Du suchst einen Punkt wo sich g(x,y) nicht mehr nach x als auch nicht mehr nach y ändert.

[mm] \bruch{\partial g(x,y)}{\partial x} [/mm] = 0
[mm] \bruch{\partial g(x,y)}{\partial y} [/mm] = 0

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]