matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikMax-Likelihood Binomialverteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Max-Likelihood Binomialverteil
Max-Likelihood Binomialverteil < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max-Likelihood Binomialverteil: Tipp
Status: (Frage) überfällig Status 
Datum: 16:53 Mo 25.01.2010
Autor: Hoffmann79

Aufgabe
Schätzen Sie unter Anwendung der Maximum-Likelihood-Methode den Parameter p (0>p>1) einer Binomialverteilung bei vorgegebenem Parameterwert n aufgrund einer Stichprobe vom Umfang m!

Hallo allerseits,

hänge bei obiger Aufgabe, hauptsächlich ist die Kombination das Problem, bzw. ich nicht weiß wie ich diese sinnvoll auflösen kann.

Ansatz: Parameter n bekannt, Umfang m, [mm] p=\theta [/mm]

[mm] P(X=k)=\vektor{n \\ k}p^{k}(1-p)^{n-k} [/mm]

[mm] L(x_{1},...,x_{m};\theta)=\produkt_{i=1}^{n}\vektor{n \\ x}\theta^{x}(1-\theta)^{n-x} [/mm]

[mm] lnL(x_{1},...,x_{m};\theta)=\sum_{i=1}^{n}ln[\vektor{n \\ x_{i}}\theta^{x_{i}}(1-\theta)^{n-x_{i}}] [/mm]

[mm] lnL(x_{1},...,x_{m};\theta)=\sum_{i=1}^{n}[ln\vektor{n \\ x_{i}}+x_{i}ln\theta+(n-x_{i})ln(1-\theta)] [/mm]

Tja, und nun hänge ich fest. Normalerweise würde ich jetzt die Klammer mit dem Logarithmus auflösen, aber ich weiß nich wie ich [mm] \vektor{n \\ x_{i}}\theta^{x_{i}} [/mm] zerlege.



        
Bezug
Max-Likelihood Binomialverteil: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 27.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]