matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizenbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrizenbeweise
Matrizenbeweise < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenbeweise: Ansätze
Status: (Frage) überfällig Status 
Datum: 04:32 So 10.05.2009
Autor: Bob1982

Aufgabe
a) Sei A eine n x n Matrix über R mit rang(A)=m

z.z.: Es gibt n x m Matrizen X,Y über R, so dass [mm]A=XY^T[/mm] gilt

b) Seien X,Y nun n x m Matrizen über R mit [mm]n \geq m[/mm] und A eine reguläre n x n Matrix über R

z.z.: [mm]A+XY^T[/mm] regulär <=> [mm]I+Y^TA^{-1}X[/mm] regulär

Meine Gedanken zu Aufgaben:

zu a)

Damit es überhaupt erst möglich ist, dass A auch den Rang m hat muss [mm]n \geq m[/mm] gelten, da für n<m die n x n Matrix A ja nachher keinen Rang haben kann, der größer als ihre Breite ist.

Für n=m ist die Sache klar, denn dann hat A vollen Rang, ist invertierbar mit det(A) ungleich null und X und Y müssen demnach auch regulär sein.

Die Frage ist nun warum auch für n>m immer eine solche Zerlegung existieren MUSS.
Invertierbar wird die quadratische Matrix A ja dann auch nicht sein da ja kein voller Rang mehr vorliegt.
Wie könnte ich da ansetzen ?

b)

Wenn 2 Matrizen A und B regulär sind, dann ist auch AB regulär wegen det(AB)=det(A)*det(B) da det (A), det(B) ungleich null

Damit wäre [mm]A^{-1}(A+XY^T)=I+A^{-1}XY^T[/mm] auch regulär.

Wie könnte es weiter gehen ?

Gruß Björn

        
Bezug
Matrizenbeweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:21 Di 12.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]