matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen regulär  X^7
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrizen regulär X^7
Matrizen regulär X^7 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen regulär X^7: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 24.02.2007
Autor: hase-hh

Aufgabe
[mm] \pmat{ 1 & 1 &0 \\ 0 & x & 1 \\ x& 1& 0} [/mm]


a) Für welche x ist die Matrix X regulär?

b) Zeigen Sie, dass wenn X regulär ist, auch
b1) [mm] X^T [/mm] X regulär ist
b2)  -3X  [mm] X^7 [/mm]  regulär ist.


moin,

also

a) eine Matrix ist regulär, wenn ihre determinante [mm] \ne [/mm] 0 ist.

det(X)=0+x+0-0-1-0

det(X)=x-1   =>  für alle x [mm] \ne [/mm] 1  ist die Matrix X regulär.

b)

b1)
[mm] X^T [/mm] = [mm] \pmat{ 1 & 0 &x \\ 1 & x & 1 \\ 0& 1& 0} [/mm]


[mm] X^T [/mm] X  =  [mm] \pmat{ 1+x^2 & 1+x &0 \\ 1+x & 2+x^2 & x \\ 0& x& 1} [/mm]

[mm] det(X^T [/mm] X) = ... = [mm] (x-1)^2 [/mm]   =>   ebenfalls für alle x [mm] \ne [/mm] 1  regulär


b2)

-3X = [mm] \pmat{ -3 & -3 &0 \\ 0 & -3x & -3 \\ -3x& -3& 0} [/mm]

aber wie bildet man [mm] X^7 [/mm] ???

doch nicht X*X, XX *X usw...? gibt doch bestimmt einen eleganteren Weg?

danke und gruß
wolfgang

aber wie bildet man nun




        
Bezug
Matrizen regulär X^7: Determinante
Status: (Antwort) fertig Status 
Datum: 21:14 Sa 24.02.2007
Autor: heyks

Hallo Wolfgang,

du brauchst bloß den Multiplikationssatz für Determinanten anwenden.

Sind A, B n x n Matrizen, so gilt: det (A*B) = det (A)*det (B), insbesondere det [mm] (A^7) [/mm] = (det [mm] (A))^7. [/mm]

LG

Heiko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]