matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen potenzieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrizen potenzieren
Matrizen potenzieren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen potenzieren: n-te Potenz einer Drehmatrix
Status: (Frage) beantwortet Status 
Datum: 19:17 So 09.11.2008
Autor: Waska

Aufgabe
Bestimmen sie die n-te Potenz der drehmatrix (2x2 Matrix)

cos  -sin
sin    cos

Ich habe versucht, die n-te Potenz der Drehmatrix

A= cos  -sin
     sin    cos

zu bestimmen in dem ich die Formel

[mm] A^n [/mm] = [mm] (T*J*T^-1)^n [/mm] anwende,

wobei A meine Drehmatrix ist und J die Jordannormalform von A.
Leider habe ich es nicht geschafft die Jordannormalform aufzustellen, da die Drehmatrix ja nur Eigenvektoren für die Winkel 0° und 180° besitzt.

Ich weiß nicht, ob meine Idee überhaupt zur Lösung der Aufgabenstellung führt. Wenn sie das tut, dann weiß ich nicht, wie ich die Jordannormalform für meine Drehmatrix angebe.

LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrizen potenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 So 09.11.2008
Autor: otto.euler

[mm] \pmat{ cos(phi) & -sin(phi) \\ sin(phi) & cos(phi) }^{n} [/mm] = [mm] \pmat{ cos(n*phi) & -sin(n*phi) \\ sin(n*phi) & cos(n*phi) } [/mm]

Beweis durch vollständige Induktion

Verwende die Additionstheoreme:
[mm] sin(\alpha [/mm] + [mm] \beta) [/mm] = ...
[mm] cos(\alpha [/mm] + [mm] \beta) [/mm] = ...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]