matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen Frage 4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Matrizen Frage 4
Matrizen Frage 4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen Frage 4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:40 Do 07.10.2004
Autor: eini

4.)Die symmetrische Matrix A sei positiv definit ( Mein Lieblingsthema der letzten Tage :-) ) .Dann gilt
I.)  [mm] A^{-1} [/mm] ist positiv definit
II.) [mm] A^{-1} [/mm] ist negativ definit
[mm] III.)A^{-1} [/mm] ist indefinit
IV.) A muß nicht invertierbar sein.
Aufgabe: Welche dieser Aussagen stimmt?
Wie fängt man sowas an??

        
Bezug
Matrizen Frage 4: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Do 07.10.2004
Autor: Julius

Lieber eini!

> 4.)Die symmetrische Matrix A sei positiv definit ( Mein
> Lieblingsthema der letzten Tage :-) ) .Dann gilt
>  I.)  [mm]A^{-1}[/mm] ist positiv definit
>  II.) [mm]A^{-1}[/mm] ist negativ definit
>  [mm]III.)A^{-1}[/mm] ist indefinit
>  IV.) A muß nicht invertierbar sein.
>  Aufgabe: Welche dieser Aussagen stimmt?
>  Wie fängt man sowas an??

Wenn du Aufgabe 3 gelöst hast, wirst du sehen, dass die Aussage I. richtig ist.

Warum?

Da $A$ symmetrisch und positiv definit ist, hat $A$ nur positive Eigenwerte und ist ähnlich zu einer Diagonalmatrix, auf deren Diagonale nur positive Einträge (die Eigenwerte eben) stehen.

Um zu zeigen, dass auch [mm] $A^{-1}$ [/mm] positiv ist, genügt es zu zeigen, dass auch [mm] $A^{-1}$ [/mm] ähnlich zu einer Diagonalmatrix ist, auf deren Diagonale nur positive Einträge stehen. Dann hat nämlich [mm] $A^{-1}$ [/mm] nur positive Eigenwerte und ist somit als symmetrische Matrix mit positiven Eigenwerte positiv definit.

Wie könnte man das nun mit Hilfe von Aufgabe 3 zeigen? Hast du eine Idee? :-)

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]