matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Sa 12.02.2005
Autor: Relationchip

Habe bei einer aufgabe ein Problem.
Muss die Gleichung nach x umstellen.

[mm] ((A-2X)^TB)^T=B^T(A+X)-2B^T [/mm]


Die vorgegeben Lösung soll sein: X=2/3 E

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Sa 12.02.2005
Autor: Stefan

Hallo Relationchip!

Zunächst einmal rechnen wir die linke Seite aus:

Unter Verwendung der Rechenregel [mm] $(AB)^T [/mm] = [mm] B^TA^T$ [/mm] erhalten wir:

[mm] $((A-2X)^TB)^T [/mm] = [mm] B^T((A-2X)^T)^T$. [/mm]

Wegen der offensichtlichen Rechenregel [mm] $(A^T)^T=A$ [/mm] ist dieser Ausdruck gleich

[mm] $B^T(A-2X)$, [/mm]

also nach Ausmultiplizieren gleich:

$B^TA - 2B^TX$.

Wir haben also die Gleichung

$B^TA - 2B^TX = [mm] B^T(A+X) [/mm] - [mm] 2B^T$. [/mm]

So jetzt wieder ausmultiplizieren (diesmal rechts):

$B^TA - 2B^TX = B^TA + B^TX -2 [mm] B^T$. [/mm]

Substrahiert man auf beiden Seiten $B^TA + B^TX$, so erhält man:

$-3B^TX = -2 [mm] B^T$. [/mm]

Setzt man jetzt voraus, dass $B$ (und damit [mm] $B^T$) [/mm] invertierbar ist, dann kann man beide Seiten von links mit [mm] $(B^T)^{-1}$ [/mm] multiplizieren:

$-3X = -2E$.

Daraus folgt unmittelbar die Behauptung.

Da du überhaupt keine eigenen Ansätze lieferst, habe ich mal ein paar Fragen an dich:

1) Kannst du meine Rechnungen nachvollziehen?

2) Was findest du daran schwer?

Im Wesentlichen ist es doch das Gleiche wie das Rechnen mit Zahlen, nur dass man hier die Kommutativität nicht hat und das Transponieren hinzukommt.

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]