matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Beweisen von Blockmatrizen!
Status: (Frage) überfällig Status 
Datum: 15:13 Mi 01.11.2006
Autor: BlackBien

Aufgabe
Seien r,s [mm] \ge [/mm] I natürliche Zahlen. Seien [mm] A_{I},B_{I} \in M_{r,r} (\IR),A_{2},B_{2} \in M_{r,s} (\IR),A_{3},B_{3} \in M_{s,r} (\IR),A_{4},B_{4} \in M_{s,s} (\IR). [/mm]
Betrachten Sie die (r+s)x(r+s) "Blockmatrizen" [mm] A=\pmat{A_{I} & A_{2} \\ A_{3} & A_{4}} [/mm] und [mm] B=\pmat{B_{I} & B_{2} \\ B_{3} & B_{4}}. [/mm]
Zeigen Sie:
Es git A*B = [mm] \pmat{A_{I} *B_{I} + A_{2} * B_{3} & A_{I}*B_{2}+ A_{2} * B_{4} \\ A_{3} *B_{I} + A_{4} * B_{3} & A_{3}*B_{2}+ A_{4} * B_{4}} [/mm] , d.h. mit Blockmatrizen kann man wie mit 2x2-Matrizen rechnen.

Hallo ich weiß, dass dieses Ergebnis richtig ist, doch ich weiß nicht wie ich das beweisen soll, ich habe echt kein plan, wie muss man das machen und worauf muss ich achten??? Bitte bitte helft mir!!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 03.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]