matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrixform von linearen Abb.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrixform von linearen Abb.
Matrixform von linearen Abb. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixform von linearen Abb.: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:18 So 22.03.2009
Autor: martin7

Aufgabe
Schreiben Sie die geometrisch gegebenen Abbildungen im [mm] \IR^2 [/mm] in Matrixform um.

Spiegelung an der gerade mit der Gleichung [mm] y=k\*x [/mm]
Orthogonale Projektion auf die Gerade mit der Gleichung [mm] y=k\*x [/mm]

Hallo!

Ich habe einen Übungszettel mit mehreren dieser Lineartransformationen in Matrixform und brauche unbedingt einen Tipp damit ich weitermachen kann.

Die Spiegelung um die Gerade [mm] y=k\*x, [/mm] wie kann ich mir da geometrisch den Normalabstand zur geraden anschreiben? Den Steigungswinkel
[mm] \alpha [/mm] = arctan(k) habe ich mir schon herausgelesen aber ich steh auf der Leitung wie ich den weiterverwende.

Sobald ich den Normalabstand in Vektorform habe, brauche ich ihn eigentlich nur zum ursprünglichen Vektor dazuzählen, oder?

Vielen Dank für die Hilfe schon im Voraus!


        
Bezug
Matrixform von linearen Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 So 22.03.2009
Autor: pelzig

Solche Aufgaben löst man am Besten so:

1) Eine Basis wählen bzgl. der die gesuchte Lineare Abbildung [mm] $\Phi$ [/mm] sehr einfach ist
2) Aufstellen der Darstellungsmatrix bzgl. dieser Basis
3) ggf. Basistransformation durchführen, falls das notwendig ist.

Also z.B. die Spiegelung an der Geraden y=kx (ich nehme an [mm] $k\in\IR$ [/mm] ist fester Parameter)
1) Hier bietet sich ja z.B. folgende Basis an: [mm] $B=\{(1,k),(-k,1)\}$, [/mm] denn der erste Vektor liegt auf der Geraden y=kx und der zweite Vektor ist orthogonal dazu, d.h. es muss [mm] $\Phi(1,k)=(1,k)$ [/mm] und [mm] $\Phi(-k,1)=(k,-1)$ [/mm]
2) bzgl. dieser Basis ist [mm]\[\Phi\]:=\pmat{1&0\\0&-1}[/mm]
3) Will man nun die Matrix z.B. bzgl. der Standartbasis, so berechnet man die zugehörige Basistransformation T und betrachte die Matrix [mm] $T^{-1}[\Phi]T$ [/mm]

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]