Matrixdarstellung linearer Abb < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:56 Mo 20.02.2012 | Autor: | quasimo |
Aufgabe | Seien V,W und U drei endlich dimensionale Vektorräume über [mm] \IK, [/mm] Weiters seien B,C und D geordnete Basen von V,W und U: Für jede lineare Abbildung [mm] \phi:V->W [/mm] und jedes v [mm] \in [/mm] W gilt :
[mm] [\psi \circ \phi]_{DB} [/mm] = [mm] [\psi]_{DC} [\phi]_{CB}
[/mm]
Unsere Definition:
[mm] [\phi]_{CB} [/mm] x := [mm] ({\Phi^{-1}}_C \circ \phi \circ \Phi_B) [/mm] (x) |
[mm] [\psi \circ \phi]_{DB} [/mm] = [mm] \Phi_D^{-1} \circ (\psi \circ \phi) \circ \Phi_B
[/mm]
= ( [mm] {\Phi^{-1}}_{ D } \circ \psi \circ \Phi_{C } [/mm] ) [mm] \circ ({\Phi^{-1}}_{ C } \circ \psi \circ \Phi_{ B })
[/mm]
So ich verstehe nicht, warum sich die Basen unten ändern!
|
|
|
|
> Seien V,W und U drei endlich dimensionale Vektorräume
> über [mm]\IK,[/mm] Weiters seien B,C und D geordnete Basen von V,W
> und U: Für jede lineare Abbildung [mm]\phi:V->W[/mm]
Hier fehlt dann wohl noch etwas...
> und jedes v [mm]\in[/mm] W gilt :
Ich sehe im weiteren Verlauf kein v mehr...
Wofür wird das gebraucht?
> [mm][\psi \circ \phi]_{DB}[/mm] = [mm][\psi]_{DC} [\phi]_{CB}[/mm]
>
> Unsere Definition:
> [mm][\phi]_{CB}[/mm] x := [mm]({\Phi^{-1}}_C \circ \phi \circ \Phi_B)[/mm] (x)
Hallo,
in meiner vorhergehenden Antwort habe ich Dir per Sprüchlein ja schon gesagt, was hier geschieht, aber sich sollte wohl doch nochmal auf das hier Geschriebene eingehen:
[mm] $[\phi]_{CB} [/mm] ist die Matrix, welche die Abbildung [mm] \phi [/mm] in Koordinaten bzgl B in Start- und C im Zielraum beschreibt.
Das Ziel: man füttert die Matrix mit einem Vektor in Koordinaten bzgl B und bekommt sein Bild unter [mm] \phi [/mm] in Koordinaten bzgl. C.
Was ist nun für einen beliebigen Vektor x (in Koordinaten bzgl B) [mm][\phi]_{CB}[/mm] x? Das, was dasteht: [mm]({\Phi^{-1}}_C \circ \phi \circ \Phi_B)[/mm] (x)=[mm]({\Phi^{-1}}_C \circ \phi)(\Phi_B (x))=(\Phi^{-1}_C( \phi(\Phi_B (x)))[/mm].
[mm] \Phi_B [/mm] ist die Abbildung, die jedem Koordinatenvektor bzgl B den entsprechenden Vektor aus V zuordnet, [mm] \Phi^{-1}_C [/mm] ordnet entsprechend jedem Vektor aus W seinen Koordinatenvektor bzgl C zu.
Wir beginnen also mit [mm] x\in K^{dim V}.
[/mm]
[mm] \Phi_B(x) [/mm] liefert uns den zugehörigen Vektor aus V.
mit [mm] \phi(\Phi_B(x)) [/mm] bekommen wir sein Bild unter [mm] \phi, [/mm] also einen Vektor aus W, und [mm] \Phi^{-1}_C(\phi(\Phi_B)(x)) [/mm] macht aus diesem den zugehörigen Koordinatenvektor bzgl C.
>
>
> [mm][\psi \circ \phi]_{DB}[/mm] = [mm]\Phi_D^{-1} \circ (\psi \circ \phi) \circ \Phi_B[/mm]
>
> = ( [mm]{\Phi^{-1}}_{ D } \circ \psi \circ \Phi_{C }[/mm] ) [mm]\circ ({\Phi^{-1}}_{ C } \circ \psi \circ \Phi_{ B })[/mm]
>
> So ich verstehe nicht, warum sich die Basen unten ändern!
Ich sehe keine sich "ändernden" Basen. Du meinst, wie oder warum das C ins Spiel kommt?
Rein rechnerisch dürfte klar sein, daß die Gleichung stimmt.
Euer Ziel ist es hier, die Matrix, die [mm] \psi\circ \phi [/mm] bzgl B und D beschreibt, mithilfe von Darstellungsmatrizen der Abbildungen [mm] \psi [/mm] und [mm] \phi [/mm] auszudrücken.
Nun hast Du leider den Satz oben verstümmelt wiedergegeben. (Etwas nervig, u.a, deswegen, weil ich das Fehlende nun tippen darf...)
Wir haben [mm] \phi:V\to [/mm] W und [mm] \psi:W\to [/mm] U.
Daher wird sich die Darstellungmatrix von [mm] \psi\circ \phi [/mm] immer auf Basen von V und U beziehen müssen,
die von [mm] \phi [/mm] auf solche von V und W, und die von
[mm] \psi [/mm] auf solche von W und U.
Spätestens in dem Moment, in welchem Du Dir klarmachst, was ist, wenn die Dimensionen von V, W, U verschieden sind, wirst Du verstehen, daß eine Basis vom W hierbei ins Spiel kommen muß.
LG Angela
|
|
|
|