matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrix umformen
Matrix umformen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 04.09.2012
Autor: PaulW89

Aufgabe
Bestimmen Sie zu der Matrix [mm] A:=\pmat{ 2 & 2 \\ -2 & 2 } [/mm] eine (komplexe) Matrix T und eine (komplexe) Diagonalmatrix D, sodass [mm] T^{-1}DT=A. [/mm]


Hallo,

ich habe gegrübelt und gegoogled, bin jedoch nicht hinter den Sinn dieser Aufgabe gekommen.
Mag das mal jemand übersetzen? :)

Gruß,
Paul

        
Bezug
Matrix umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Di 04.09.2012
Autor: wieschoo


> Bestimmen Sie zu der Matrix [mm]A:=\pmat{ 2 & 2 \\ -2 & 2 }[/mm]
> eine (komplexe) Matrix T und eine (komplexe) Diagonalmatrix
> D, sodass [mm]T^{-1}DT=A.[/mm]
>  
> Hallo,

Hi

>  
> ich habe gegrübelt und gegoogled, bin jedoch nicht hinter
> den Sinn dieser Aufgabe gekommen.
>  Mag das mal jemand übersetzen? :)

Du sollst die Matrix A diagonalisieren.
Oder möchtest du eine Anwendung wissen?

Der erste Schritt ist gewöhnlich in seinen Unterlagen alles zum Thema "Diagonalisieren einer Matrix" zu suchen. Dann steht da meistens als erstes Eigenwerte mit Hilfe des charakteristischen Polynoms ausrechnen.

Wenn du dazu nichts in deinen Unterlagen findest, da gibt es hier sehr ausführliche Beispiele (in [mm] $\IR$): [/mm]
https://matheraum.de/read?t=835420
https://matheraum.de/read?t=903328

Wie lautet nun das charakteristische Polynom von A?
Wie lauten die Eigenwerte von A?

>  
> Gruß,
>  Paul

Gruß zurück

Bezug
                
Bezug
Matrix umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Mi 05.09.2012
Autor: PaulW89

Danke dir, habe es nun geschafft! :) Das Eigenwertproblem kannte ich schon.
Brauchte nur das entsprechende Stichwort "diagonalisieren", um mir ein Kochrezept für diese Aufgabe ergooglen zu können.

Gruß,
Paul!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]