Matrix bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A= [mm] \pmat{ a & b \\ c & d } [/mm] , wobei a,b,c,d Element aus R.
Welche Eigenschaft müssen die Zahlen a,b,c,d haben, damit eine 2X2 Matrix B existiert, so dass A*B die 2X2-Einheitsmatrix ist. Bestimmen sie in diesem Fall eine solche Matrix B. |
Hallo,
mein Ergebniss
a1 müsste ungleich 0 sein,
b1 müsste ungleich 0 sein,
c1 müsste ungleich 0 sein,
d1 müsste ungleich 0 sein.
und die Matrix B, mit der die Matrix A zu multipilzieren ist, sollte B eine 2X2 Matrix sein mit der Eigenschaft das alle Koeffizienten ungleich 0 sind, damit eine 2X2 Einheitsmatrix entsteht.
.
ich hoffe meine frage ist verständlich genug
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:45 Mi 10.11.2010 | Autor: | Marc |
Hallo antoniolopez20,
> Sei A= [mm]\pmat{ a & b \\ c & d }[/mm] , wobei a,b,c,d Element aus
> R.
> Welche Eigenschaft müssen die Zahlen a,b,c,d haben, damit
> eine 2X2 Matrix B existiert, so dass A*B die
> 2X2-Einheitsmatrix ist. Bestimmen sie in diesem Fall eine
> solche Matrix B.
> Hallo,
>
> mein Ergebniss
>
> a1 müsste ungleich 0 sein,
> b1 müsste ungleich 0 sein,
> c1 müsste ungleich 0 sein,
> d1 müsste ungleich 0 sein.
>
> und die Matrix B, mit der die Matrix A zu multipilzieren
> ist, sollte B eine 2X2 Matrix sein mit der Eigenschaft das
> alle Koeffizienten ungleich 0 sind, damit eine 2X2
> Einheitsmatrix entsteht.
Nein, deine Bedinung(en) ist weder notwendig noch hinreichend.
Zum Beispiel ist doch die Einheitsmatrix selbst eine, zu der eine Matrix B existiert mit $E*B=E$ (diese Matrix $B$ ist wieder die Einheitsmatrix).
In der Einheitsmatrix sind aber Einträge $=0$.
Ein anderes Beispiel ist [mm] $\pmat{ 1 & 1 \\ 1 & 1 }$. [/mm] Zu dieser Matrix müsste deiner Theorie nach eine Matrix B existieren mit [mm] $\pmat{ 1 & 1 \\ 1 & 1 }*B=E$.
[/mm]
Es gibt aber keine solche Matrix $B$.
Wenn dir keine "höheren" Sätze aus der Vorlesung zur Verfügung stehen (und nur dann macht die Aufgabe ja Sinn), dann musst du es ganz elementar nachrechnen. Nimm' dir dazu eine allgemeine Matrix B her und versuche sie aus der Bedingung $A*B=E$ zu berechnen. Die Bedingungen, die du beim Ausrechnen an die Einträge von A stellen musstest, sind die gesuchten Eigenschaften der Zahlen a,b,c,d.
Also nochmal etwas konkreter: Es ist [mm] $B=\pmat{ x & y \\ z & w }$. [/mm]
[mm] $\pmat{ a & b \\ c & d }*\pmat{ x & y \\ z & w }=\pmat{ 1 & 0 \\ 0 & 1 }$
[/mm]
Wenn du das Matrizenprodukt auf der linken Seiten der Gleichung ausführst und dort nur die Ergebnismatrix steht, dann kannst du vier Gleichungen ablesen.
Versuche dieses Gleichungssystem dann nach x,y,z,w zu lösen, achte bei deinen Berechnungen aber darauf, ob sie für beliebige Werte für a,b,c,d gültig sind (zum Beispiel darfst du beim Lösen deines Gleichungssystem ja nicht durch Null teilen oder mit Null multiplizieren; wenn du also eine Gleichung gerne mit a multiplizieren willst, geht das nur für den Fall, dass [mm] $a\not=0$ [/mm] ist.)
Viele Grüße,
Marc
|
|
|
|
|
Sollten meine Gleichungen so aussehen?
Also meine 4 Gleichungen:
ax+bz=1
cx+dz=0
ay+bw=0
cy+dw=1
|
|
|
|
|
¡hola antonio!
si, es correcto eso.
saludos
reverendo
|
|
|
|