Matrix / Kommutativität < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:53 Do 05.04.2012 | Autor: | Lu- |
Aufgabe | Ich habe eine Frage: Zwei n [mm] \times [/mm] n Matrix sind kommutativ wenn beide Diagonalmatrizen sind und bei der einen Matrix, die Diagonalelemente paarweise verschieden sind.
Wieso ist dieser Zusatz, dass die Diagonalelemente paarweise verschieden sind von Bedeutung?
Habt ihr eine Bsp für mich, dass wenn zwei Diagonalelemente gleich sind die Matrizen nicht kommutativ sind? |
Danke,lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:33 Do 05.04.2012 | Autor: | Marcel |
Hallo,
> Ich habe eine Frage: Zwei n [mm]\times[/mm] n Matrix sind kommutativ
> wenn beide Diagonalmatrizen sind und bei der einen Matrix,
> die Diagonalelemente paarweise verschieden sind.
>
> Wieso ist dieser Zusatz, dass die Diagonalelemente
> paarweise verschieden sind von Bedeutung?
> Habt ihr eine Bsp für mich, dass wenn zwei
> Diagonalelemente gleich sind die Matrizen nicht kommutativ
> sind?
> Danke,lg
solange es sich um Matrizen mit etwa Einträgen aus einem Körper [mm] $K\,$ [/mm] handelt, sehe ich den Zusatz als überflüssig an:
Falls die Matrizen [mm] $S:=(s_{i,j})_{i,j=1}^n$ [/mm] und [mm] $T:=(t_{i,j})_{i,j=1}^n$ [/mm] mit [mm] $s_{i,j}=t_{i,j}=0=0_K$ [/mm] für alle $i [mm] \not=j$ [/mm] sind (formal könnte man das andeuten per [mm] $S=(\delta_{i,j}\cdot s_{i,j})_{i,j=1}^n$ [/mm] und [mm] $T=(\delta_{i,j}\cdot t_{i,j})_{i,j=1}^n$), [/mm] so folgt doch
$$S [mm] \cdot T=(\delta_{i,j}\cdot s_{i,j} \cdot t_{i,j})_{i,j=1}^n\,,$$
[/mm]
wobei [mm] $\delta_{i,j}$ [/mm] das Kronecker-Delta ist: Also [mm] $=1\,$ [/mm] genau für [mm] $i=j\,,$ [/mm] andernfalls [mm] $=0\,.$
[/mm]
Also ist die $n [mm] \times [/mm] n$-Matrix $S [mm] \cdot [/mm] T$ auch eine Diagonalmatrix mit Diagonaleintrag [mm] $s_{i,i}\cdot t_{i,i}$ [/mm] in der [mm] $i\,$-ten [/mm] Zeile und [mm] $i\,$-ten [/mm] Spalte.
Analog ist die $n [mm] \times [/mm] n$-Matrix $T [mm] \cdot [/mm] S$ eine Diagonalmatrix, wo in der [mm] $i\,$-ten [/mm] Zeile und [mm] $i\,$-ten [/mm] Spalte der Eintrag [mm] $t_{i,i}\cdot s_{i,i}$ [/mm] steht. Da in einem Körper [mm] $K\,$ [/mm] die Multiplikation kommtativ ist, sind die Einträge jeweils gleich und damit folgt $S [mm] \cdot [/mm] T=T [mm] \cdot S\,.$ [/mm]
Sollen denn die Matrizen auch Einträge aus einem Körper haben (falls noch nicht bekannt: [mm] $\IQ,\IR,\IC$ [/mm] sind alles Körper)?
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:47 Do 05.04.2012 | Autor: | Lu- |
Das war mir schon klar, entschuldige, ich hab die Frage nicht ganz verständlich formuliert.
Wenn die Diagonalmatrix A aus Einträgen z.B aus dem Körper [mm] \IQ [/mm] besteht und die Diagonalmatrix B aus Einträgen z.B aus dem Körper [mm] \IC [/mm] besteht. Und die die Diagonaleinträge in B nicht paarweise verschieden sind.
Dann müsste doch folge AB [mm] \not= [/mm] BA
Aber ich finde nur Beispiele in der die Kummutativität gilt.
Also ich suche ein konkretes Bsp mit Zahlen, das aussagt AB [mm] \not= [/mm] BA wenn die Diagonaleinträge in B nicht paarweise verschieden sind
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:14 Do 05.04.2012 | Autor: | Marcel |
Hallo,
> Das war mir schon klar, entschuldige, ich hab die Frage
> nicht ganz verständlich formuliert.
>
> Wenn die Diagonalmatrix A aus Einträgen z.B aus dem
> Körper [mm]\IQ[/mm] besteht und die Diagonalmatrix B aus Einträgen
> z.B aus dem Körper [mm]\IC[/mm] besteht.
die Unterscheidung der Körper je Matrix ist irgendwie nicht wirklich sinnvoll, die Matrizen sollten Einträge des selben Körpers haben (schließlich berechnen wir die Matrixeinträge durch Berechnungen im Körper) - hier ist es aber eh egal:
[mm] $\IQ$ [/mm] ist in [mm] $\IC$ [/mm] eingebettet. Wir können also komplett in [mm] $\IC$ [/mm] rechnen (was wir dann auch sinnvollerweise tun sollten).
> Und die die
> Diagonaleinträge in B nicht paarweise verschieden sind.
>
> Dann müsste doch folge AB [mm]\not=[/mm] BA
> Aber ich finde nur Beispiele in der die Kummutativität
> gilt.
>
> Also ich suche ein konkretes Bsp mit Zahlen, das aussagt AB
> [mm]\not=[/mm] BA wenn die Diagonaleinträge in B nicht paarweise
> verschieden sind
Für mich macht die Aufgabenstellung so, wie Du sie beschreibst, keinen Sinn. Schließlich ist ja für
[mm] $$A=(a_{i,j})_{\substack{i=1,...,m\\j=1,...,n}}\,,$$
[/mm]
[mm] $$B=(b_{j,k})_{\substack{j=1,...,n\\k=1,...,p}}$$
[/mm]
das Produkt $P:=A [mm] \cdot [/mm] B$ per Definitionem gegeben als
$$P=A [mm] \cdot B:=(\sum_{k=1}^n a_{i,k}b_{k,j})_{\substack{i=1,...,m\\j=1,...,p}}\,.$$
[/mm]
Bei der Berechnung des Eintrags
[mm] $$p_{i,j}=\sum_{k=1}^n a_{i,k}b_{k,j}$$
[/mm]
muss daher das Produkt [mm] $a_{i,k}b_{k,j}$ [/mm] definiert sein, so wie auch die Summe über solche Produkte. Das geht etwa, wenn alle [mm] $a_{i,j}$ [/mm] und [mm] $b_{i,j}$ [/mm] im selben Körper vorliegen (und weil [mm] $\IQ$ [/mm] in [mm] $\IR$ [/mm] und [mm] $\IR$ [/mm] in [mm] $\IC$ [/mm] eingebettet ist, würde man, wenn die erste Matrix Einträge nur aus [mm] $\IQ$ [/mm] und die zweite etwa Einträge nur aus [mm] $\IR$ [/mm] hätte, dann direkt mit Einträgen aus [mm] $\IR$ [/mm] rechnen - natürlich kann man hier auch zum "größten Oberkörper" [mm] $\IC$ [/mm] vorspringen, selbst, wenn man nur Matrizen mit Einträgen in [mm] $\IQ$ [/mm] hat - wir wollen ja nur ein Matrixprodukt berechnen, und nicht etwa Basen aufstellen).
Bist Du Dir also sicher, dass wir nur von Diagonalmatrizen hier reden? Oder geht es um Dreiecksmatrizen (obere, untere) oder Produkt zwischen Diagonal und Dreiecksmatrix oder oder oder?
Denn nach wie vor: Die Frage hier hat genau die gleiche Antwort wie die Frage zuvor!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:23 Do 05.04.2012 | Autor: | Lu- |
Hallo,
Ich stell einfach mal die aufgabe hinein, vlt hab ich die falsch verstanden:
Aufgabe:
Sei D eine (n [mm] \times [/mm] n) - Diagonalmatrix mit paarweise verschiedenen Diagonaleinträgem und A eine weitere n [mm] \times [/mm] n Matrix. Zeige AD=DA genau dann gilt, wenn A eine Diagonalmatrix ist.
Zeige anhand eines Beispiels, dass die Voraussetzung an die Diagonaleinträge voN D wirklich notwendig sind.
Den ersten teil hab ich gelöst nun fehlt mir das Bsp im letzten Satz.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:03 Do 05.04.2012 | Autor: | Marcel |
Hallo,
> Hallo,
> Ich stell einfach mal die aufgabe hinein, vlt hab ich die
> falsch verstanden:
>
> Aufgabe:
> Sei D eine (n [mm]\times[/mm] n) - Diagonalmatrix mit paarweise
> verschiedenen Diagonaleinträgem und A eine weitere n
> [mm]\times[/mm] n Matrix.
>
> Zeige AD=DA genau dann gilt, wenn A eine
> Diagonalmatrix ist.
d.h., es waren zwei Sachen zu zeigen: Aus [mm] $AD=DA\,$ [/mm] folgt notwendig, dass [mm] $A\,$ [/mm] Diagonalform hat, und es war zu zeigen, dass die Diagonalform von [mm] $A\,$ [/mm] hinreichend dafür ist, dass [mm] $AD=DA\,$ [/mm] gilt. Letztgenanntes ist doch - wie schon von mir geschrieben - eine Banalität.
> Zeige anhand eines Beispiels, dass die Voraussetzung an
> die Diagonaleinträge voN D wirklich notwendig sind.
>
> Den ersten teil hab ich gelöst nun fehlt mir das Bsp im
> letzten Satz.
Soweit ich die Aufgabe verstehe, sollst Du folgendes machen: Nimm' irgendeine Diagonalmatrix [mm] $D\,$ [/mm] mit nicht paarweise verschiedenen Einträgen, etwa [mm] $D=\text{diag}(1,1,3)\in \IR^{3 \times 3}\,.$
[/mm]
Und nun versuche, eine Matrix [mm] $A\,,$ [/mm] die eben NICHT Diagonalform hat, so zu finden, dass $A*D=D*A$ gilt. Denn das zeigt:
Wenn [mm] $D\,$ [/mm] eine Matrix in Diagonalform ist mit nicht paarweise verschiedenen Diagonaleinträgen, so folgt aus [mm] $AD=DA\,$ [/mm] NICHT NOTWENDIGERWEISE, dass [mm] $A\,$ [/mm] Diagonalform hat.
Das ist auch die einzig mögliche Interpretation: Denn bei dieser "genau dann, wenn"-Aussage gilt die Richtung [mm] $\Leftarrow$ [/mm] IMMER!
Gruß,
Marcel
|
|
|
|