matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeMatrix, Gauss
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Matrix, Gauss
Matrix, Gauss < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix, Gauss: Gaussverfahren, M-1
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 01.12.2008
Autor: MissMaro

Aufgabe
Frage ist:  Gib, wenn möglich eine Matrix M-1 an, die die Population vor einem Jahr aus der ehtuigen errechnet.

$ [mm] \pmat{ 0,9 & 1,2 \\ 1,4 & 0,7 } [/mm] $

Hmm
jetzt muss ich kurz gucken wie das geht mit gauss

Frage ist:  Gib, wenn möglich eine Matrix M-1 an, die die Population vor einem Jahr aus der ehtuigen errechnet.

$ [mm] \pmat{ 0,9 & 1,2 \\ 1,4 & 0,7 } [/mm] $ * $ [mm] \pmat{ a11 & a12\\ a21 & a22} [/mm] $ = $ [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] $


$ [mm] \pmat{ 0,9a11 +1,2a21 & 1,4a11 + 0,7 a22\\ 0,9 12 + 1,2 a12& 1,4 a12+ 0,7a22 } [/mm] $

____________________________________
Das gaußsche Eliminationsverfahren oder einfach Gauß-Verfahren (nach Carl Friedrich Gauß) ist ein Algorithmus aus den mathematischen Teilgebieten der linearen Algebra und der Numerik. Es ist ein wichtiges Verfahren zum Lösen von linearen Gleichungssystemen und beruht darauf, dass elementare Umformungen zwar das Gleichungssystem ändern, aber die Lösung erhalten
Folgende Umformungen stellen bei einem linearen Gleichungssystem Äquivalenzumformungen dar (d.h. sie verändern die Lösungsmenge nicht):

1.) Das Vertauschen von zwei Gleichungen / zwei Zeilen der Matrix
2.) Addition von zwei Gleichungen / Zeilen der Matrix und Ersetzen einer Gleichung / Zeile durch die Summe
3.) Multiplikation einer Gleichung / Zeile der Matrix mit einer Zahl ungleich Null.

Oft werden die Umformungen 2 und 3 auch gleichzeitig durchgeführt, z.B. die Gleichung / Zeile (III) durch 2·(II) - 5·(III) ersetzt.

Diese Umformungen werden im Gauss-Verfahren durchgeführt, bis die sogenannte Stufenform erreicht ist.

_________________________________


Ich weiß jetzt leider nicht wie ich damit umgehen sollen
wie ich die gleichungen bilde
ich hab so was:

0,9a11 + 1,2a21 = 1
1,4a11 + 0,7a21 =0
0,9a12 + 1,2a22 = 0
1,4*a12 + 0,7a22 =1

wer kan mir helfen und die matri umwandeln

        
Bezug
Matrix, Gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 01.12.2008
Autor: snp_Drake

Schon beantwortet:

https://www.vorhilfe.de/read?t=479026

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]