matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenMatrix-Dgl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Matrix-Dgl
Matrix-Dgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix-Dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Di 29.09.2015
Autor: AntonK

Aufgabe
[mm] $\frac{dx}{dt}=\pmat{ 0 & 1 \\ -1 & 0 }x$ [/mm] mit [mm] $x(t_0)=x_0$ [/mm] und [mm] $y(t_0)=y_0$. [/mm]

Hallo Leute,

würde gerne das mal durchrechnen und ihr sagt mir, wo mein Fehler liegt. In dem Buch steht als Lösung $x(t)=x_0cos(t)+y_0sin(t)$ und $y(t)=-x_0sin(t)+y_0cos(t)$


Ich hab also anfangen und die Eigenwerte der Matrix bestimmen und erhlate das charakteristische Polynom:
[mm] $\lambda^2+1=0$ [/mm]

=> [mm] $\lambda_1=i$ [/mm] und [mm] $\lambda_2=-i$ [/mm]

Anschließend berechne ich die Eigenvektoren und erhalte zum Eigenwert [mm] $i:\vektor{-i \\ 1}$ [/mm] und zu [mm] $-i:\vektor{i \\ 1}$. [/mm]

Dies stimmt soweit alles, habe es mir von einem Porgramm nachrechnen lassen, damit erhalte ich als Lösung:

[mm] $x(t)=Aie^{-it}-Bie^{it}$ [/mm]
[mm] $y(t)=Ae^{-it}+Be^{it}$ [/mm]

Als nächstes setze ich meine Anfangswerte ein bestimme mittels Gleichungssystem A und B:

[mm] $x_0=Aie^{-it_0}-Bie^{it_0}$ [/mm]
[mm] $y_0=Ae^{-it_0}+Be^{it_0}$ [/mm]

Wenn ich nun A und B bestimmt habe und einsetze kürzen sich jedes mal die Kosinus und Sinusterme raus und ich erhalte:

[mm] $x(t)=x_0$ [/mm] und [mm] $y(t)=y_0$ [/mm]

Was mir nicht weiterhilft... Wie kommt man auf das Endergebnis im Buch?

Danke schonmal!

        
Bezug
Matrix-Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 30.09.2015
Autor: Hias

Hallo,
du hast schon richtig die Eigenwerte und Eigenvektoren berechnet. Nun kannst du die Matrix diagonalisieren.
Mit [mm] $M=\pmat{ i & -i \\ 1 & 1 }$ [/mm] (Matrix der Eigenvektoren) und [mm] $D=\pmat{ i & 0 \\ 0 & -i }$ [/mm] kannst du also deine Ausgangsmatrix wie folgt darstellen:
[mm] $$\pmat{ 0 & 1 \\ -1 & 0 }=M*D*M^{-1}$$ [/mm]
In Vorlesungen wird normalerweise gezeigt, dass die Lösung deines Problems durch [mm] $$\pmat{x(t) \\ y(t) }=M*exp(D*t)*M^{-1}*\pmat{x_0 \\ y_0 }$$ [/mm]
berechnet wird. Um die Lösung zu berechnen, so wie sie in deinem Buch steht verwende https://de.wikipedia.org/wiki/Eulersche_Formel
Kapitel Verwandtschaft zwischen Exponential- und Winkelfunktionen
MfG
Hias

Bezug
                
Bezug
Matrix-Dgl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mi 30.09.2015
Autor: AntonK

Ich habe mittlerweile einen anderen Weg gefunden, indem ich einfach das Matrixexponential dieser Matrix berechen, dort sieht man schnell die Reihendarstelltung des Sinus bzw. Kosinus, aber deine Idee hilft mir den Übergang von beidem zu verstehen, danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]