matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieMaß konstruieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Maß konstruieren
Maß konstruieren < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß konstruieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Sa 20.10.2007
Autor: DOKTORI

Aufgabe
Seien [mm] A=\{1,2,3,4\} [/mm] und [mm] D=\{0, \{1,2\},\{1,3\},\{3,4\},\{2,4\},A\}. [/mm]

Konstruiren Sie zwei verschidene Maße auf σ(D), die auf D übereinstimmen.

Kann mir jemand mit einer kleine Bsp. sagen wie man Maßen konstruiert?

        
Bezug
Maß konstruieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Sa 20.10.2007
Autor: SEcki


>  Kann mir jemand mit einer kleine Bsp. sagen wie man Maßen
> konstruiert?

Ganz im Allgemeinen, in dem man angibt, was die Werte auf den Mengen sind. Allerdings kann man sich durch die Eigenschaften des Maßes einige Angaben sparen. Hier im Bsp. musst du wegen Additivität des Maßes blos für ein-elementige Mengen die Maße angeben, zB [m]\mu(\{1\})=1[/m]. Jetzt musst du so zwei Maßes basteln, die auf D gleich sind (ohne lang drüber nachzudenken sind sicherlich Gleichungen wie [m]2+2=1+3[/m] hilfreich :-))

SEcki

Bezug
                
Bezug
Maß konstruieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Sa 20.10.2007
Autor: DOKTORI

Aufgabe
Es wäre super wenn jemand konkret ein maß bauen kann.Der Tipp hat mich nicht weiter geholfen....



Bezug
                        
Bezug
Maß konstruieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 So 21.10.2007
Autor: Somebody


> Es wäre super wenn jemand konkret ein maß bauen kann.Der
> Tipp hat mich nicht weiter geholfen....
>  

Du könntest bei dieser speziellen Aufgabe einen einfachen Ansatz machen und schauen, ob Du damit so durchkommst, dass noch ein Freiheitsgrad übrigbleibt, der Dir erlaubt, zwei verschiedene, aber auf $D$ übereinstimmende Masse anzugeben.

Etwa so: Sei [mm] $m_i [/mm] := [mm] \mu(\{i\})$, [/mm] für $i=1,2,3,4$. Durch diese Werte ist [mm] $\mu$ [/mm] auf [mm] $\sigma(D)$ [/mm] vollständig bestimmt. Nehmen wir, der Einfachheit halber, zudem an, dass [mm] $\mu(\{1,2\})=\mu(\{1,3\})=\mu(\{3,4\})=\mu(\{2,4\})=1$ [/mm] ist, dann muss also folgendes Gleichungssystem für die [mm] $m_i$ [/mm] gelten:

[mm]\begin{array}{rcrcl} m_1 &+& m_2 &=& 1\\ m_1 &+& m_3 &=& 1\\ m_3 &+& m_4 &=& 1\\ m_2 &+& m_4 &=& 1 \end{array}[/mm]

Dieses System hat die Lösungen [mm] $\mathcal{L}=\{(m_1|m_2|m_3|m_4)) \mid m_1=m_4=z, m_2=m_3=1-z, z\in\IR\}$ [/mm]

Daraus folgt, dass [mm] $\mu(A)=m_1+m_2+m_3+m_4=2$. $\mu(\emptyset)$ [/mm] muss ohnehin gleich $0$ sein. Somit haben wir die Möglichkeit, zwei verschiedene Masse [mm] $\mu$ [/mm] anzugeben, die auf $D$ übereinstimmen: indem wir für $z$ verschiedene Werte aus [mm] $\IR$ [/mm] einsetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]