Markov-Kette nachweisen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei p [mm] \in [/mm] [0, 1], S eine endliche Menge und f : S x {0, 1} [mm] \to [/mm] S. Weiter seien [mm] Y_i \sim [/mm] Bin(1, p), i [mm] \in \IN, [/mm] unabhängige Zufallsvariablen. Wir definieren rekursiv für ein festes s' [mm] \in [/mm] S:
[mm] X_0 [/mm] = s', [mm] X_n [/mm] = [mm] f(X_{n-1}, Y_n), [/mm] n [mm] \in \IN. [/mm]
ˆ
1. Zeigen Sie, dass die Folge [mm] X_0 [/mm] , [mm] X_1 [/mm] , [mm] X_2 [/mm] , . . . eine Markovkette ist.
̈
Tipp: Uberlegen Sie sich zuerst einen Beweis für S und f wie in Teil 2 der Aufgabe
2. Geben Sie die Übergangsmatrix [mm] \IP [/mm] im Fall S = {−1, 1} und f (x, 0) = x, f (x, 1) = −x, x [mm] \in [/mm] S an. |
Hallo,
ich bin leicht verunsichert, ob denn die Aufgabe überhaupt korrekt gestellt ist.
Zunächst einmal verstehe ich schon die rekursive Definition nicht. Es wird doch von S x {0,1} nach S abgebildet. Als zweites Argument von f in der Definition wird aber eine Zufallsvariable verwendet, die zwar die Werte 0 und 1 annimmt, aber eben eine Funktion ist.
Dann haben wir in der Vorlesung eine Markov-Kette zu einer Startverteilung auf S definiert:
Eine Markov-Kette zu [mm] \IP [/mm] mit Startverteilung [mm] \pi_0 [/mm] ist eine Folge [mm] X_0,X_1,X_2,... [/mm] von (diskreten) Zufallsvariablen mit Werten in S, s.d. (1) [mm] P(X_0=i)=\pi_0(i)
[/mm]
und (2) Es gilt die Markov Eigenschaft.
Jedenfalls ist in der Aufgabenstellung doch keine Startverteilung angegeben?
Soll man laut Aufgabenstellung [mm] X_0 [/mm] konstant setzen auf s'? Dann wäre [mm] P(X_0=s')=1
[/mm]
und [mm] P(X_0=s)=0 [/mm] für alle s [mm] \not= [/mm] s' aus S.
Für die Übergangsmatrix hatten wir [mm] \IP^m [/mm] (i,j) = [mm] P(X_{n+m}=j\|X_n [/mm] = i) hergeleitet mit i,j aus S. Wende ich dies nun zur Berechnung meiner Übergangsmatrix an, dann erhalte ich:
[mm] \bruch{P(X_1=j,X_0=i)}{P(X_0=i)}. [/mm] Nach obigem wäre aber wenn ich s'=-1 wähle [mm] P(X_0=1)=0, [/mm] also würde ich durch 0 teilen. Irgendwie macht das so alles wenig Sinn. Ich würde daher gerne wissen, ob ich die Aufgabe hier falsch interpretiere.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:32 Sa 08.06.2013 | Autor: | Infinit |
Hallo Heraklid,
den Index bekommst Du hin, indem Du ihn in geschweifte Klammern setzt:
[mm] X_{n-1} [/mm] gibt das gewünschte.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:11 Fr 14.06.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|