Mannigfaltigkeit orientierbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:56 Do 27.01.2011 | Autor: | Teufel |
Aufgabe | Sei $M [mm] \subset \IR^n$ [/mm] eine (n-1)-dimensionale Mannigfaltigkeit. Zeige: Falls es eine stetige Abbildung $v: M [mm] \to \IR^n$ [/mm] gibt, sodass [mm] $v(p)\notin [/mm] T_pM$ (Tangentialraum von M in p) für alle [mm] $p\in [/mm] M$ gilt, dann ist M orientierbar. |
Hi!
Also ich hatte mir gedacht, dass man sicher irgendwie zeigen kann, dass man ausgehend von diesem gegebenen v ein anderes Vektorfeld w konstruieren kann, das ein stetiges Normalenfeld auf M ist. Irgendwie via w=v+(Vektor aus Tangentialraum). Daraus würde ja dann schon die Orientierbarkeit folgen, denn weil v keine Nullstelle besitzt (diese läge ja in T_pM), besitzt w auch keine (v und Vektoren aus T_pM sind linear unabhängig), und weil es ein stetiges Normalenvektorfeld aus M gibt, das nirgends 0 wird, wäre M orientierbar.
Irgendwie muss man ja die Vektoren von v auch alle so biegen können, dass die senkrecht auf der Mannigfaltigkeit stehen, denn $span(v(p)) [mm] \oplus T_pM=\IR^n$, [/mm] also man kann jeden Vektor des [mm] \IR^n [/mm] bilden, wenn man zu v(p) irgendeinen Vektor aus dem Tangentialraum addiert.
Ist diese Überlegung richtig? Und reicht diese Begründung vielleicht sogar schon? Und wenn nicht, kann ich irgendwie w konkret aus v ableiten?
Vielen Dank.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:08 Do 27.01.2011 | Autor: | rainerS |
Hallo Teufel!
> Sei [mm]M \subset \IR^n[/mm] eine (n-1)-dimensionale
> Mannigfaltigkeit. Zeige: Falls es eine stetige Abbildung [mm]v: M \to \IR^n[/mm]
> gibt, sodass [mm]v(p)\notin T_pM[/mm] (Tangentialraum von M in p)
> für alle [mm]p\in M[/mm] gilt, dann ist M orientierbar.
> Hi!
>
> Also ich hatte mir gedacht, dass man sicher irgendwie
> zeigen kann, dass man ausgehend von diesem gegebenen v ein
> anderes Vektorfeld w konstruieren kann, das ein stetiges
> Normalenfeld auf M ist. Irgendwie via w=v+(Vektor aus
> Tangentialraum).
Ja, das scheint mir der richtige Weg.
> Daraus würde ja dann schon die
> Orientierbarkeit folgen, denn weil v keine Nullstelle
> besitzt (diese läge ja in T_pM), besitzt w auch keine (v
> und Vektoren aus T_pM sind linear unabhängig), und weil es
> ein stetiges Normalenvektorfeld aus M gibt, das nirgends 0
> wird, wäre M orientierbar.
Für jedes $p$ ist $T_pM$ ein $(n-1)$-dim. Unterraum des [mm] $\IR^n$, [/mm] daher gibt es für jedes p auch ein orthogonales Komplement dazu. Damit kannst du auch für jedes $p$ den Vektor $v(p)$ in eine Summe zweier Vektoren zerlegen, deren einer in $T_pM$ liegt, der andere $w(p)$ im jeweiligen Komplement.
> Ist diese Überlegung richtig? Und reicht diese Begründung
> vielleicht sogar schon? Und wenn nicht, kann ich irgendwie
> w konkret aus v ableiten?
Versuch's mit der Basisdarstellung von $v(p)$: der Anteil, der sich nicht durch eine Basis von $T_pM$ ausdrücken lässt, ist $w(p)$. Damit müsstest du auch die Stetigkeit hinkriegen.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:30 Do 27.01.2011 | Autor: | Teufel |
Hi!
Danke erst einmal. Aber wie meinst du das genau mit Basisdarstellung von v(p)?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:46 Do 27.01.2011 | Autor: | rainerS |
Hallo Teufel!
> Danke erst einmal. Aber wie meinst du das genau mit
> Basisdarstellung von v(p)?
In jedem Punkt p hast du doch eine Basis [mm] $b_{p,1},\dots,b_{p,n}$, [/mm] sodass [mm] $b_{p,1},\dots,b_{p,n-1}$ [/mm] eine Basis des $T_pM$ sind und [mm] $b_{p,n}$ [/mm] im orthogonalen Komplement von $T_pM$ liegt.
Damit ist $v(p) = [mm] \summe_{i} v_i(p) b_{p,i}$. [/mm] Definiere $w(p) := [mm] v_n(p) b_{p,n}$ [/mm] .
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:24 Do 27.01.2011 | Autor: | Teufel |
Ah, klar, vielen Dank! Doch so einfach. :)
|
|
|
|