Mannigfaltigkeit, äquivalenz < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $X,Y$ glatte Mannigfaltigkeiten. Zeigen Sie: Eine Abbildung [mm] $f:X\to [/mm] Y$ ist genau dann glatt, wenn für jede offene Teilmenge [mm] $V\subseteq [/mm] Y$ und jede glatte Funktion [mm] $g:V\to\mathbb{R}$ [/mm] die Verknüpfung [mm] $g\circ [/mm] f: [mm] f^{-1}(V)\to\mathbb{R}$ [/mm] glatt ist. |
Hallo,
ich habe eine Frage zu dieser Aufgabe.
Zu erst einmal zu der Definition von "glatte Abbildung".
Wie lautet diese korrekt? In unserem online Skript steht es anders als wir es in der Vorlesung aufgeschrieben haben, bzw. ich abgeschrieben habe:
Seien $X,Y$ glatte Mannigfaltigkeiten. Eine Abbildung [mm] $f:X\to [/mm] Y$ heißt glatt in [mm] $x\in [/mm] X$, falls es glatte Karten [mm] $(U,\phi)$ [/mm] um $x$ und [mm] $(V,\psi)$ [/mm] um $f(x)$ gibt, für die [mm] $\psi\circ f\circ \phi^{-1}$ [/mm] auf einer Umgebung von x glatt wird.
So steht es im Skript. Müsste es stattdessen eine Umgebung von [mm] $\psi(x)$ [/mm] sein?
Zum Beweis:
[mm] "$\Rightarrow$"
[/mm]
Sei [mm] $f:X\to [/mm] Y$ glatt und sei [mm] $V\subseteq [/mm] Y$ offen mit $g: [mm] V\to\mathbb{R}$ [/mm] glatt.
Zeige: [mm] $g\circ [/mm] f$ ist glatt.
[mm] $g\circ [/mm] f$ ist glatt, wenn die Funktion für alle [mm] $v\in f^{-1}(V)$ [/mm] glatt ist.
Sei [mm] $v\in f^{-1}(V)$ [/mm] beliebig. Da $f$ glatt, gibt es glatte Karten [mm] $(U,\phi)$ [/mm] um $v$ und [mm] $(W,\psi)$ [/mm] um $f(v)$ so, dass [mm] $\psi\circ f\circ \phi^{-1}$ [/mm] auf einer Umgebung von [mm] $\psi(v)$ [/mm] glatt ist.
Da $g$ glatt, gibt es zusätzlich eine glatte Karte [mm] $(S,\sigma)$ [/mm] um $g(f(v))$ so, dass [mm] $\psi'\circ g\circ f\circ \sigma^{-1}$ [/mm] auf einer Umgebung von [mm] $\sigma(v)$ [/mm] glatt ist.
Das wäre mein Versuch.
Ich würde mich freuen, wenn jemand die Definition klären könnte und mir bei meinem Beweis Fehler aufzeigt, bzw. Tipps gibt, wie ich es besser machen kann.
Vielen Dank im voraus.
|
|
|
|
Ich wäre an Tipps, oder Kommentaren weiterhin interessiert.
Danke.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 So 03.07.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|