matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Mannigfaltigkeit
Mannigfaltigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mannigfaltigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:47 Di 22.06.2010
Autor: raubkaetzchen

Aufgabe
ZeigenSie, dass der Zylinder [mm] Z=\{ (x,y,z)\in \IR^3:x^2+y^2=1 \} [/mm]

eine 2-dimensionale Untermannigfaltigkeit des [mm] \IR^3 [/mm] ist. Geben sie lokale Parametrisierungen an, die den Zylinder überdecken.

Hallo,

Wir haben das Thema mit Mannigfaltigkeiten erst neu begonnen und ich habe noch nicht so viel Erfahrungen damit.

Ich konnte zeigen, dass Z eine Untermannigfaltigkeit ist. Nur weiss ich nicht so genau, wie ich die parametrisierung hinbekomme.

Kann mir jemand einen Plan geben, worauf zu achten ist und wie hier heranzugehen am besten ist?

Liebe Grüße

        
Bezug
Mannigfaltigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 22.06.2010
Autor: raubkaetzchen

weiss keiner, wie man eine Parametrisierung bilden könnte?


Bezug
        
Bezug
Mannigfaltigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 24.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]