ML Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] X_1,..,X_n [/mm] seinen unabhängige k-dimensionale [mm] \mathcal{N}_k(\mu,\Sigma)-verteilte [/mm] ZG, dann ist der ML-Schätzer für [mm] \Sigma [/mm] gleich [mm] \frac{1}{n}\sum_{i=1}^n(x_i-\overline x)(x_i-\overline x)^T. [/mm] |
Hallo zusammen,
meine Frage ist, wenn [mm] X_1,..,X_n [/mm] aus dem Aufgabenteil [mm] \mathcal{N}_k(\mu,\Sigma_i)-verteilte [/mm] ZG wären. wie sähe der ML-Schätzer für die [mm] \Sigma_i [/mm] aus?
Die Produktdichte wäre
[mm] p(x,\theta)=(2\pi)^{-kn/2}\produkt_{i=1}^{n}|\Sigma_i|^{-1/2}\exp{(-\frac{1}{2}\sum_{i=1}^n(x_i-\overline x)\Sigma_i^{-1}(x_i-\overline x)^T)}
[/mm]
Jetzt müsste man wieder den Exponeten [mm] \sum_{i=1}^n(x_i-\overline x)\Sigma_i^{-1}(x_i-\overline x)^T [/mm] minimieren. Kommt man da auch wieder auf die Residuenquadratsumme [mm] \frac{1}{n}\sum_{i=1}^n(x_i-\overline x)(x_i-\overline x)^T?
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 Mo 01.04.2013 | Autor: | luis52 |
Moin, ich fuerchte, dass diese Frage unloesbar ist, denn du hast $n$ Varianz-Kovarianzmatrizen [mm] $\mathbf{\Sigma}_i$ [/mm] und einen Mittelwertevektor, die du mit $n$ Beobachtungen schaetzen willst.
Betrachte den Extremfall einer Beobachung $x$ aus einer Normalverteilung mit Erwartungswert [mm] $\mu$ [/mm] und einer Varianz [mm] $\sigma^2$. [/mm] Die Likelihoodfunktion ist dann
[mm] $L(\mu,\sigma^2)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\dfrac{(x-\mu)^2)}{2\sigma^2}\right)$.
[/mm]
Der Exponentialteil wird offenbar fuer [mm] $\hat\mu=x$ [/mm] minimiert und wird zum Faktor 1. Dann kannst du aber keine Schaetzung mehr fur [mm] $\sigma^2$ [/mm] bestimmen.
vg Luis
|
|
|
|
|
Aufgabe | Sei [mm] \{p(\cdot,\theta)|\theta\in \Theta\} [/mm] ein reguläres Modell und [mm] $\Theta=\Theta_0\oplus \Theta_1$. [/mm] Die verallgemeinerte Likelihood-Quotienten-Statistik ist
[mm] L(X)=\frac{\sup_{\theta\in \Theta} p(X,\theta)}{\sup_{\theta\in \Theta_0} p(X,\theta)} [/mm]
und der zugehörige verallgemeinerte LQ-Test
[mm] \delta(X)=\mathbbm{1}_{\left\lbrace L\left(X\right)>c\right\rbrace } c\in \mathbb{R}^{+} \cup \left\lbrace \infty \right\rbrace. [/mm] |
Hi Luis,
danke für die Antwort. Ich habe dazu noch eine weiterführende Frage und zwar:
Solange [mm] $X_i\sim \mathcal{N}_k(\mu,\Sigma)-verteilte [/mm] $ ZG sind, wobei i=1,..,n ist. Dann erhält man für den ML-Schätzer von [mm] \Sigma [/mm] die Statistik [mm] \hat\Sigma(x)=\frac{1}{n}\sum_{i=1}^n(x_i-\overline x)(x_i-\overline x)^T. [/mm]
Damit ergibt sich für den LQ-Test die Teststatistik [mm] L(x)=\left(\frac{\hat\Sigma_0(x)}{\hat\Sigma(x)}\right)^{kn/2}, [/mm] stimmt das soweit?
Wenn man nun die Verteilungsvorgaben zu [mm] $X_i\sim \mathcal{N}_k(\mu,\Sigma_i) [/mm] $ ändern würde, wie nennt man dann den Test wenn man einfach die Teststatistik [mm] \left(\frac{\hat\Sigma_0(x)}{\hat\Sigma(x)}\right)^{kn/2} [/mm] beibehält?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:20 Mo 01.04.2013 | Autor: | luis52 |
> Sei [mm]\{p(\cdot,\theta)|\theta\in \Theta\}[/mm] ein reguläres
> Modell und [mm]\Theta=\Theta_0\oplus \Theta_1[/mm]. Die
> verallgemeinerte Likelihood-Quotienten-Statistik ist
> [mm]L(X)=\frac{\sup_{\theta\in \Theta} p(X,\theta)}{\sup_{\theta\in \Theta_0} p(X,\theta)}[/mm]
Hier hast du anscheinend Zaehler und Nenner vertauscht, oder?
> und der zugehörige verallgemeinerte LQ-Test
> [mm]\delta(X)=\mathbbm{1}_{\left\lbrace L\left(X\right)>c\right\rbrace } c\in \mathbb{R}^{+} \cup \left\lbrace \infty \right\rbrace.[/mm]
>
>
> Hi Luis,
>
> danke für die Antwort. Ich habe dazu noch eine
> weiterführende Frage und zwar:
>
> Solange [mm]X_i\sim \mathcal{N}_k(\mu,\Sigma)-verteilte[/mm] ZG
> sind, wobei i=1,..,n ist. Dann erhält man für den
> ML-Schätzer von [mm]\Sigma[/mm] die Statistik
> [mm]\hat\Sigma(x)=\frac{1}{n}\sum_{i=1}^n(x_i-\overline x)(x_i-\overline x)^T.[/mm]
>
> Damit ergibt sich für den LQ-Test die Teststatistik
> [mm]L(x)=\left(\frac{\hat\Sigma_0(x)}{\hat\Sigma(x)}\right)^{kn/2},[/mm]
> stimmt das soweit?
Sieht gut aus.
>
> Wenn man nun die Verteilungsvorgaben zu [mm]X_i\sim \mathcal{N}_k(\mu,\Sigma_i)[/mm]
> ändern würde, wie nennt man dann den Test wenn man
> einfach die Teststatistik
> [mm]\left(\frac{\hat\Sigma_0(x)}{\hat\Sigma(x)}\right)^{kn/2}[/mm]
> beibehält?
Du hast dann dasselbe Problem wie oben: Im Nenner brauchst du den ML-Schaetzer. Ausserdem: Was willst du testen?
vg Luis
|
|
|
|
|
> Hier hast du anscheinend Zaehler und Nenner vertauscht, oder?
Eigentlich nicht, ich nahm an, beide Versionen finden Gebrauch, je nach dem wie man den Test dann aufbaut, d.h. L(X)>c oder L(X)<c.
> Ausserdem: Was willst du testen?
Mir geht es hier eher um Begriffe die ich suche. Und zwar: ist die lineare Transformation [mm] T(x)=\frac{n-r}{r-q}(L^{2/n}(x)-1) [/mm] eine Teststatistik aus dem Bereich linearer Modelle. Unter gewissen Verteilungsvoraussetzungen, welche in linearen Modellen gegeben sind führt der LQ-Test automatisch zum Quotienten von den besprochenen Residuenquadratsummen. Wenn ich nun die Verteilungsannahmen wie erwähnt abändere und trotzdem beim Quotienten solcher Residuenquadratsummen bleibe, dann ist das ja in dem Sinne kein LQ-Test sondern irgendetwas anderes. Und ich frage mich ob das dann überhaupt noch ein Test ist und wenn ja was für einer.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:05 Di 02.04.2013 | Autor: | Reduktion |
Angenommen man würde die [mm] \Sigma_i [/mm] gewichten welche Ansätze nutzt man um solche Gewichte zu Schätzen? Im Spezialfall [mm] X_i\sim\mathcal{N}(\mu,\sigma_i^2) [/mm] mit Gewichten [mm] w_i, [/mm] ließe sich [mm] X_i/\sqrt{w_i} [/mm] zu [mm] \mathcal{N}(\mu,\sigma^2) [/mm] transformieren?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 03.04.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|