matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMLE Estimator f. Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - MLE Estimator f. Varianz
MLE Estimator f. Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MLE Estimator f. Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:15 Fr 20.06.2008
Autor: cosPhi

Aufgabe
Gegeben ist eine Konstante in AWGN (Additive White Gaussian Noise), wobei w[n] iid gauss-verteilt ist [mm] (\mathcal{N}(0, \sigma^2)) [/mm] mit UNBEKANNTER Varianz [mm] \sigma^2: [/mm]

x[n] = A + w[n]

Es soll analytisch ein ML-Estimator [mm] \hat{\sigma}^2_{ML} [/mm] für die unbekannte Varianz bestimmt werden.
Weiters soll bestimmt werden, ob der Estimator effizient ist oder nicht und die Effizienz soll anhand der erwarteten Varianz bestimmt werden.

Hi,

Ich habe die o.g. Aufgabenstellung. Wäre hier A zu schätzen wäre die Aufgabe einfach. Allerdings hab ich keinen Plan wie ich anfangen soll wenn ich die Varianz schätzen soll :-?


Kann mir irgendwer dafür einen Denkanstoß geben?

Vielen Dank im Vorraus! :-)

lg,
divB


        
Bezug
MLE Estimator f. Varianz: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Sa 21.06.2008
Autor: cosPhi

Blöde Frage dazu: Kann ich hier die Konstante A als [mm] \mu [/mm] in der Normalverteilung betrachten? Also dass dann

x[n] ~ [mm] \mathcal{N}(A, \sigma^2) [/mm]

gilt?


Bezug
        
Bezug
MLE Estimator f. Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Sa 05.07.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]