matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisL^p Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - L^p Räume
L^p Räume < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L^p Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Mi 25.04.2007
Autor: dena

Aufgabe
a) [mm] L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b] [/mm] , und diese Inklusion ist echt.

b) Für 1 [mm] \le [/mm] p < [mm] \infty [/mm] gilt weder [mm] L^p(\IR) \subset L^\infty(\IR) [/mm] noch [mm] L^\infty(\IR) \subset L^p(\IR) [/mm]

c) Für f [mm] \in [/mm] C[0,1] ist [mm] \parallel [/mm] f [mm] \parallel _{\infty} [/mm] = [mm] \parallel [/mm] f [mm] \parallel_{L^\infty} [/mm]

hallo leute!

Ich habe diese 2 Aufgaben zu lösen und habe einige Schwierigkeiten.

zu a) Die Lösung wäre da:
Für 1 [mm] \le [/mm] p < [mm] \infty [/mm] ist g(t) := (ln [mm] \bruch{t}{c})^{-2} \in L^p [/mm] \ [mm] L^\infty [/mm] , also
[mm] L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b] [/mm]

Doch ich verstehe diese Lösung nicht ganz. Wieso ist g(t) [mm] \not\in L^\infty? [/mm]

zur b)
Für 1 [mm] \le [/mm] p < q [mm] \le \infty [/mm] ist f(t) := (1 + [mm] t)^{-\bruch {1}{p}} \in L^q [/mm] \ [mm] L^p [/mm]
Für 1 [mm] \le [/mm] p < q < [mm] \infty [/mm] ist f(t) := [mm] t^{-\bruch{1}{q}} [/mm] * [mm] CHI_{[0,1]} \in L^p [/mm] \ [mm] L^q [/mm]
Schließlich ist f(t) [mm] :\equiv [/mm] 1 [mm] \in L^\infty [/mm] \ [mm] L^p [/mm] für 1 [mm] \le [/mm] p < [mm] \infty [/mm]

Passt das so?


und zur c) habe ich im Moment noch gar keine Idee...

Wäre dankbar für Tipps!

lg dena

        
Bezug
L^p Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 03:26 Do 26.04.2007
Autor: MatthiasKr

Hallo dena,

> a) [mm]L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b][/mm] , und
> diese Inklusion ist echt.
>  
> b) Für 1 [mm]\le[/mm] p < [mm]\infty[/mm] gilt weder [mm]L^p(\IR) \subset L^\infty(\IR)[/mm]
> noch [mm]L^\infty(\IR) \subset L^p(\IR)[/mm]
>  
> c) Für f [mm]\in[/mm] C[0,1] ist [mm]\parallel[/mm] f [mm]\parallel _{\infty}[/mm] =
> [mm]\parallel[/mm] f [mm]\parallel_{L^\infty}[/mm]
>  hallo leute!
>  
> Ich habe diese 2 Aufgaben zu lösen und habe einige
> Schwierigkeiten.
>  
> zu a) Die Lösung wäre da:
>  Für 1 [mm]\le[/mm] p < [mm]\infty[/mm] ist g(t) := (ln [mm]\bruch{t}{c})^{-2} \in L^p[/mm]
> \ [mm]L^\infty[/mm] , also
> [mm]L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b][/mm]
>  
> Doch ich verstehe diese Lösung nicht ganz. Wieso ist g(t)
> [mm]\not\in L^\infty?[/mm]

kannst du mal erklaeren, was $c$ ist? ist [mm] $c\in [/mm] [a,b]$ oder nicht?

>  
> zur b)
>  Für 1 [mm]\le[/mm] p < q [mm]\le \infty[/mm] ist f(t) := (1 + [mm]t)^{-\bruch {1}{p}} \in L^q[/mm]
> \ [mm]L^p[/mm]

hmm, fehlt da nicht so etwas wie [mm] $\chi_{\mathbb{R}\backslash [-2,2]}$? [/mm] ich denke, der pol bei $-1$ macht probleme.


>  Für 1 [mm]\le[/mm] p < q < [mm]\infty[/mm] ist f(t) := [mm]t^{-\bruch{1}{q}}[/mm] *
> [mm]CHI_{[0,1]} \in L^p[/mm] \ [mm]L^q[/mm]

[daumenhoch]
aber wozu brauchst du eigentlich die $q$s?


>  Schließlich ist f(t) [mm]:\equiv[/mm] 1 [mm]\in L^\infty[/mm] \ [mm]L^p[/mm] für 1
> [mm]\le[/mm] p < [mm]\infty[/mm]

ja!

>  
> Passt das so?
>  
>
> und zur c) habe ich im Moment noch gar keine Idee...

hmm, ist ja eigentlich klar.... die [mm] $C^0$-norm [/mm] ist das supremum, waehrend die [mm] $L^\infty$-norm [/mm] das essentielle supremum ist, d.h. unter nichtbeachtung von nullmengen. du musst argumentieren, dass sich das supremum einer stetigen funktion auf einem kompaktum nicht aendert, wenn du eine nullmenge wegnimmst.

VG
Matthias


>  
> Wäre dankbar für Tipps!
>  
> lg dena


Bezug
                
Bezug
L^p Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Do 26.04.2007
Autor: dena

Hallo Matthias!

Zuerst möchte ich mich einmal für deine häufigen und schnellen Antworten bedanken, super! :-)

zur a)

Die Lösung wäre da:

>  >  Für 1 [mm]\le[/mm] p < [mm]\infty[/mm] ist g(t) := (ln [mm]\bruch{t}{c})^{-2} \in L^p[/mm]
> > \ [mm]L^\infty[/mm] , also
> > [mm]L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b][/mm]
>  >  
> > Doch ich verstehe diese Lösung nicht ganz. Wieso ist g(t)
> > [mm]\not\in L^\infty?[/mm]
>  kannst du mal erklaeren, was [mm]c[/mm] ist?
> ist [mm]c\in [a,b][/mm] oder nicht?


Ich habe angenommen, dass c für eine Konstante steht... kapier ich es deswegen nicht? hm..

> >  

> > zur b)
>  >  Für 1 [mm]\le[/mm] p < q [mm]\le \infty[/mm] ist f(t) := (1 + [mm]t)^{-\bruch {1}{p}} \in L^q[/mm]
> > \ [mm]L^p[/mm]
>  hmm, fehlt da nicht so etwas wie
> [mm]\chi_{\mathbb{R}\backslash [-2,2]}[/mm]? ich denke, der pol bei
> [mm]-1[/mm] macht probleme.

Und wenn ich o.E.d.A. annehme, dass mein unbeschränktes Intervall I = [0, [mm] \infty[ [/mm] ist, dann brauch ich [mm] \chi_{\mathbb{R}\backslash [-2,2]} [/mm] nicht, oder? oder darf ich das nicht tun, weil ich [mm] \IR [/mm] vorgegeben habe?

>  
>
> >  Für 1 [mm]\le[/mm] p < q < [mm]\infty[/mm] ist f(t) := [mm]t^{-\bruch{1}{q}}[/mm] *

> > [mm]CHI_{[0,1]} \in L^p[/mm] \ [mm]L^q[/mm]
>  [daumenhoch]
> aber wozu brauchst du eigentlich die [mm]q[/mm]s?
>  

Habe einfach gedacht, q = [mm] \infty. [/mm] Was hier ja aber nicht stimmt.. dann kann ich also
"Für 1 [mm]\le[/mm] p < q < [mm]\infty[/mm] ist f(t) := [mm]t^{-\bruch{1}{q}}[/mm] * [mm]CHI_{[0,1]} \in L^p[/mm] \ [mm]L^q[/mm]" weglassen..


>
> >  Schließlich ist f(t) [mm]:\equiv[/mm] 1 [mm]\in L^\infty[/mm] \ [mm]L^p[/mm] für 1

> > [mm]\le[/mm] p < [mm]\infty[/mm]
>  ja!
>  >  
> > Passt das so?
>  >  
> >
> > und zur c) habe ich im Moment noch gar keine Idee...
>  hmm, ist ja eigentlich klar.... die [mm]C^0[/mm]-norm ist das
> supremum, waehrend die [mm]L^\infty[/mm]-norm das essentielle
> supremum ist, d.h. unter nichtbeachtung von nullmengen. du
> musst argumentieren, dass sich das supremum einer stetigen
> funktion auf einem kompaktum nicht aendert, wenn du eine
> nullmenge wegnimmst.
>  

c) muss ich mir noch überlegen!

Danke nochmals und lg
dena


Bezug
                        
Bezug
L^p Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Do 26.04.2007
Autor: MatthiasKr


> Hallo Matthias!
>  
> Zuerst möchte ich mich einmal für deine häufigen und
> schnellen Antworten bedanken, super! :-)
>  
> zur a)
>
> Die Lösung wäre da:
>  >  >  Für 1 [mm]\le[/mm] p < [mm]\infty[/mm] ist g(t) := (ln
> [mm]\bruch{t}{c})^{-2} \in L^p[/mm]
> > > \ [mm]L^\infty[/mm] , also
> > > [mm]L^\infty[a,b] \subset \bigcap_{p<\infty} L^p[a,b][/mm]
>  >  >

>  
> > > Doch ich verstehe diese Lösung nicht ganz. Wieso ist g(t)
> > > [mm]\not\in L^\infty?[/mm]
>  >  kannst du mal erklaeren, was [mm]c[/mm]
> ist?
> > ist [mm]c\in [a,b][/mm] oder nicht?
>  
>
> Ich habe angenommen, dass c für eine Konstante steht...
> kapier ich es deswegen nicht? hm..

naja, wenn [mm] $c\in[a,b]$ [/mm] ist, dann hat g an der stelle c einen pol, ist also nicht in [mm] $L^\infty$. [/mm]

>  
> > >  

> > > zur b)
>  >  >  Für 1 [mm]\le[/mm] p < q [mm]\le \infty[/mm] ist f(t) := (1 +
> [mm]t)^{-\bruch {1}{p}} \in L^q[/mm]
> > > \ [mm]L^p[/mm]
>  >  hmm, fehlt da nicht so etwas wie
> > [mm]\chi_{\mathbb{R}\backslash [-2,2]}[/mm]? ich denke, der pol bei
> > [mm]-1[/mm] macht probleme.
>  
> Und wenn ich o.E.d.A. annehme, dass mein unbeschränktes
> Intervall I = [0, [mm]\infty[[/mm] ist, dann brauch ich
> [mm]\chi_{\mathbb{R}\backslash [-2,2]}[/mm] nicht, oder? oder darf
> ich das nicht tun, weil ich [mm]\IR[/mm] vorgegeben habe?
>  >  
> >
> > >  Für 1 [mm]\le[/mm] p < q < [mm]\infty[/mm] ist f(t) := [mm]t^{-\bruch{1}{q}}[/mm] *

> > > [mm]CHI_{[0,1]} \in L^p[/mm] \ [mm]L^q[/mm]
>  >  [daumenhoch]
> > aber wozu brauchst du eigentlich die [mm]q[/mm]s?
>  >  
> Habe einfach gedacht, q = [mm]\infty.[/mm] Was hier ja aber nicht
> stimmt.. dann kann ich also
> "Für 1 [mm]\le[/mm] p < q < [mm]\infty[/mm] ist f(t) := [mm]t^{-\bruch{1}{q}}[/mm] *
> [mm]CHI_{[0,1]} \in L^p[/mm] \ [mm]L^q[/mm]" weglassen..

deine idee ist aber richtig, nimm funktionen die eine polstelle haben, aber trotzdem integrierbar sind (wie deine), und schneide sie ausserhalb eines kompaktums ab.


>  
>
> >
> > >  Schließlich ist f(t) [mm]:\equiv[/mm] 1 [mm]\in L^\infty[/mm] \ [mm]L^p[/mm] für 1

> > > [mm]\le[/mm] p < [mm]\infty[/mm]
>  >  ja!
>  >  >  
> > > Passt das so?
>  >  >  
> > >
> > > und zur c) habe ich im Moment noch gar keine Idee...
>  >  hmm, ist ja eigentlich klar.... die [mm]C^0[/mm]-norm ist das
> > supremum, waehrend die [mm]L^\infty[/mm]-norm das essentielle
> > supremum ist, d.h. unter nichtbeachtung von nullmengen. du
> > musst argumentieren, dass sich das supremum einer stetigen
> > funktion auf einem kompaktum nicht aendert, wenn du eine
> > nullmenge wegnimmst.
>  >  
> c) muss ich mir noch überlegen!
>  
> Danke nochmals und lg
>  dena
>  

gruss ;-)
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]