matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikLosziehung - Wahrscheinlichkei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Losziehung - Wahrscheinlichkei
Losziehung - Wahrscheinlichkei < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Losziehung - Wahrscheinlichkei: Losziehung mit Reihenfolge
Status: (Frage) überfällig Status 
Datum: 10:46 Mi 20.07.2016
Autor: Juridicum1

Aufgabe
Die Versuchs-Annahme ist eine Abstraktion eines anderen Problems, daß sich mit den Mitteln der W.-Rechnung nicht abbilden lässt. Augenzwinkern Die Annahme: Die Gesamtmenge n entspricht genau der Auswahlmenge und der der Argumente(?), ohne Zurücklegen. Beispiele: 3214 oder 634215.

Wie teilen sich die einzelnen Ergebnisse, 0 richtige, 3 richtige, usw. auf?
Kann man eine Formel heranziehen, die alle Resultate beinhaltet und kann man ein Tabellenkalkulations-Programm verwenden? Reicht dabei die Eingabe von n (zB n=6, n=30,...)?

Meine Ideen:
Das Lotto-Modell mit der Kombination von richtigen/falschen "Wegen" greift nicht. Die Gesamtmenge ist n! (zB 4x3x2x1). Die Einteilung nach richtig/falsch-Mustern zB xx00 "riecht" nach einer Normalverteilung und schaut plausibel aus. Bei 2 aus 4 richtigen gibts 6 Muster, bei 1 aus 4 richtig/falschen gibts 4. Bei 4 richtigen/falschen 1 Muster.

n-1 Richtige sind unmöglich, weil man dann zwangsläufig alle richtig hat.

Meine Frage:
Die Versuchs-Annahme ist eine Abstraktion eines anderen Problems, daß sich mit den Mitteln der W.-Rechnung nicht abbilden lässt. Augenzwinkern Die Annahme: Die Gesamtmenge n entspricht genau der Auswahlmenge und der der Argumente(?), ohne Zurücklegen. Beispiele: 3214 oder 634215.

Wie teilen sich die einzelnen Ergebnisse, 0 richtige, 3 richtige, usw. auf?
Kann man eine Formel heranziehen, die alle Resultate beinhaltet und kann man ein Tabellenkalkulations-Programm verwenden? Reicht dabei die Eingabe von n (zB n=6, n=30,...)?

Meine Ideen:
Das Lotto-Modell mit der Kombination von richtigen/falschen "Wegen" greift nicht. Die Gesamtmenge ist n! (zB 4x3x2x1). Die Einteilung nach richtig/falsch-Mustern zB xx00 "riecht" nach einer Normalverteilung und schaut plausibel aus. Bei 2 aus 4 richtigen gibts 6 Muster, bei 1 aus 4 richtig/falschen gibts 4. Bei 4 richtigen/falschen 1 Muster.

n-1 Richtige sind unmöglich, weil man dann zwangsläufig alle richtig hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Losziehung - Wahrscheinlichkei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 So 24.07.2016
Autor: phifre

Leider ist dein Post recht unverständlich, deshalb gibt es bis jetzt wohl auch noch keine Antworten..
Wie genau ist die Aufgabe und was genau Deine Frage?

Es hat keinen Zweck, wenn du zweimal so gut wie das gleiche schreibst..

Bezug
        
Bezug
Losziehung - Wahrscheinlichkei: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 04.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]