Lokalisierung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien k ein Körper und A := k x k. Zeigen Sie, dass A kein Integritätsring ist, dass aber für alle Primideale p [mm] \subseteq [/mm] A die Lokalisierung [mm] A_{p} [/mm] ein Integritätsring ist. |
Hallo,
habe ein Problem bei obiger Aufgabe.
Dass A kein Integritätsring ist liegt daran, dass (0,1), (1,0) [mm] \in [/mm] A, beide Elemente in A nicht null sind, allerdings [mm] (0,1)\*(1,0) [/mm] = (0,0) gilt.
Ich hab mir nun überlegt, dass die einzigen Primideale in A die von (1,0) und (0,1) erzeugten Hauptideale sind.
Sei nun z.B. p das von (0,1) in A erzeugte Hauptideal. Um zu zeigen, dass [mm] A_{p} [/mm] ein Integritätsring ist, betrachte ich jetzt zwei Elemente [mm] \bruch{(a_{1},a_{2})}{s_{1},s_{2}}, \bruch{(b_{1},b_{2})}{t_{1},t_{2}} \in A_{p} [/mm] (d.h. insbesondere, dass [mm] s_{1}, t_{1} \not= [/mm] 0 gilt) und zeige, dass wenn [mm] \bruch{(a_{1},a_{2})}{s_{1},s_{2}}\* \bruch{(b_{1},b_{2})}{t_{1},t_{2}}=\bruch{(0,0)}{(1,1)} [/mm] gilt, dass dann schon einer der beiden Faktoren null sein muss.
Obige Gleichung ist nach Def. genau dann erfüllt, wenn es ein [mm] u=(u_{1},u_{2}) \in A\p [/mm] gibt, sodass [mm] (u_{1},u_{2})\*(a_{1}b_{1},a_{2},b_{2}) [/mm] = (0,0) gilt.
Da u ein Element aus [mm] A\p [/mm] ist, ist [mm] u_{1} \not= [/mm] 0 und wegen k Körper folgt damit, dass [mm] a_{1} [/mm] = 0 oder [mm] b_{1} [/mm] = 0 gilt. Sei oE [mm] a_{1} [/mm] = 0.
Dann gilt [mm] \bruch{(a_{1},a_{2})}{s_{1},s_{2}} [/mm] = [mm] \bruch{(0,a_{2})}{s_{1},s_{2}}, [/mm] also ist der Zähler ein Element aus p.
Ich möchte allerdings zeigen, dass der Zähler null ist, also müsste ich ja noch [mm] a_{2}=0 [/mm] zeigen. Allerdings fehlen mir hierfür sämtliche Anhaltspunkte.
Wäre nett, wenn mir jemand weiterhelfen würde.
Viele Grüße
Anfänger
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:43 So 10.06.2012 | Autor: | felixf |
Moin!
> Seien k ein Körper und A := k x k. Zeigen Sie, dass A kein
> Integritätsring ist, dass aber für alle Primideale p
> [mm]\subseteq[/mm] A die Lokalisierung [mm]A_{p}[/mm] ein Integritätsring
> ist.
>
> habe ein Problem bei obiger Aufgabe.
> Dass A kein Integritätsring ist liegt daran, dass (0,1),
> (1,0) [mm]\in[/mm] A, beide Elemente in A nicht null sind,
> allerdings [mm](0,1)\*(1,0)[/mm] = (0,0) gilt.
Genau.
> Ich hab mir nun überlegt, dass die einzigen Primideale in
> A die von (1,0) und (0,1) erzeugten Hauptideale sind.
Das gilt allgemein: sind $R$ und $S$ Ringe mit Eins, so sind die Ideale in $R [mm] \times [/mm] S$ genau die Ideale der Form $I [mm] \times [/mm] J$ mit $I [mm] \subseteq [/mm] R$ und $J [mm] \subseteq [/mm] S$ Ideale.
Dabei ist $I [mm] \times [/mm] J$ genau dann prim (maximal), wenn $I$ prim (maximal) ist und $J = S$, oder wenn $I = R$ und $J$ prim (maximal) ist. [Das folgt bei kommutativen Ringen etwa aus $(R [mm] \times [/mm] S) / (I [mm] \times [/mm] J) [mm] \cong [/mm] (R/I) [mm] \times [/mm] (S/J)$.]
Du kannst uebrigens auch gleich allgemein zeigen, dass wenn $I$ prim und $J = S$ ist, dass $(R [mm] \times S)_{I \times J} \cong R_I$ [/mm] ist. (Analog fuer $I = R$ und $J$ prim.)
> Sei nun z.B. p das von (0,1) in A erzeugte Hauptideal.
Es gilt also $p = [mm] \{ (0, x) \mid x \in k \}$.
[/mm]
> Um zu zeigen, dass [mm]A_{p}[/mm] ein Integritätsring ist, betrachte
> ich jetzt zwei Elemente [mm]\bruch{(a_{1},a_{2})}{s_{1},s_{2}}, \bruch{(b_{1},b_{2})}{t_{1},t_{2}} \in A_{p}[/mm]
> (d.h. insbesondere, dass [mm]s_{1}, t_{1} \not=[/mm] 0 gilt) und
> zeige, dass wenn [mm]\bruch{(a_{1},a_{2})}{s_{1},s_{2}}\* \bruch{(b_{1},b_{2})}{t_{1},t_{2}}=\bruch{(0,0)}{(1,1)}[/mm]
> gilt, dass dann schon einer der beiden Faktoren null sein
> muss.
>
> Obige Gleichung ist nach Def. genau dann erfüllt, wenn es
> ein [mm]u=(u_{1},u_{2}) \in A\setminus p[/mm] gibt, sodass
> [mm](u_{1},u_{2})\*(a_{1}b_{1},a_{2},b_{2})[/mm] = (0,0) gilt.
>
> Da u ein Element aus [mm]A\setminus p[/mm] ist, ist [mm]u_{1} \not=[/mm] 0 und wegen k
> Körper folgt damit, dass [mm]a_{1}[/mm] = 0 oder [mm]b_{1}[/mm] = 0 gilt.
> Sei oE [mm]a_{1}[/mm] = 0.
> Dann gilt [mm]\bruch{(a_{1},a_{2})}{s_{1},s_{2}}[/mm] =
> [mm]\bruch{(0,a_{2})}{s_{1},s_{2}},[/mm] also ist der Zähler ein
> Element aus p.
> Ich möchte allerdings zeigen, dass der Zähler null ist,
> also müsste ich ja noch [mm]a_{2}=0[/mm] zeigen.
Nein, musst du nicht umbedingt. Es muss [mm] $\frac{(0, a_2)}{(s_1, s_2)} [/mm] = [mm] \frac{(0, 0)}{(1, 1)}$ [/mm] sein. Dazu muss nicht umbedingt [mm] $a_2 [/mm] = 0$ sein.
> Allerdings fehlen
> mir hierfür sämtliche Anhaltspunkte.
Damit [mm] $\frac{(a_1, a_2)}{(s_1, s_2)} [/mm] = [mm] \frac{(0, 0)}{(1, 1)}$ [/mm] ist, muss es ein [mm] $(v_1, v_2) \in [/mm] A [mm] \setminus [/mm] p$ geben mit [mm] $(a_1 v_1, a_2 v_2) [/mm] = [mm] (a_1, a_2) (v_1, v_2) [/mm] = (0, 0)$. Wegen [mm] $a_1 [/mm] = 0$ kannst du [mm] $v_1 [/mm] = 1$, [mm] $v_2 [/mm] = 0$ nehmen. Das Element [mm] $(v_1, v_2) [/mm] = (1, 0)$ ist schliesslich ein Element aus $A [mm] \setminus [/mm] p$, da es kein Vielfaches von $(0, 1)$ ist.
LG Felix
|
|
|
|
|
Hallo Felix,
Danke, jetzt ist mir klar, wie ich vorgehen muss.
Die weiterführenden Bemerkungen empfinde ich ebenfalls als sehr interessant und hilfreich!
Viele Grüße
Anfänger
|
|
|
|