matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLokale Injektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Lokale Injektivität
Lokale Injektivität < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokale Injektivität: Kurze Frage
Status: (Frage) beantwortet Status 
Datum: 21:26 Sa 28.02.2009
Autor: Phileas

Hi,

ich habe gerade ein kleines Problem:
Wenn ich die lokale Injektivität einer Funktion zeigen möchte geht das ja soweit ich weiss über die Jacobimatrix (falls deren Determinante ungleich Null ist).
Nun ist aber die Jacobimatrix nicht immer quadratisch, was bedeutet es existiert nicht immer eine Determinante.

Gibt es einen zweiten Weg die lokale Injektivität zu zeigen?
Ein kurzer Tipp würde völlig reichen.

Vielen Dank!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lokale Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 01.03.2009
Autor: Merle23

Sei U offene Teilmenge von [mm] \IR^p [/mm] und [mm]f : U \to \IR^n[/mm] stetig differenzierbar.

Dann sind äquivalent gilt [mm]a) \Rightarrow b)[/mm]:

a) f ist eine Immersion, d.h. [mm]D_p f[/mm] ist für alle [mm]p \in U[/mm] injektiv.
b) f ist lokal injektiv.

edit: Die Rückrichtung ist leider falsch, wie ich leider erst jetzt gemerkt hab.

Eine Gegebeispiel wäre [mm]f:\IR \to \IR,\ x \mapsto x^3[/mm]. Ist global injektiv aber die Ableitung verschwindet für x = 0.

Bezug
                
Bezug
Lokale Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 01.03.2009
Autor: Phileas

D.h. ich müsste zeigen, das $ [mm] D_p [/mm] f $für alle $p [mm] \in [/mm] U$  injektiv ist um auf die lokale Injektivität schließen zu können.

Wie mache ich das? Mein Ansatz wäre wieder die Jacobimatrix, wenn diese jedoch wieder nicht quadratisch ist stehe ich wieder ohne Plan da.
Mit würde eine Beschreibung in 3 Stichworten reichen (falls es ein allgemeines Verfahren gibt), ich habe das Gefühl ich sehe grad den Wald vor lauter Bäumen nicht...

Danke schonmal.

Bezug
                        
Bezug
Lokale Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 So 01.03.2009
Autor: Merle23


> D.h. ich müsste zeigen, das [mm]D_p f [/mm]für alle [mm]p \in U[/mm]  
> injektiv ist um auf die lokale Injektivität schließen zu
> können.
>  
> Wie mache ich das? Mein Ansatz wäre wieder die
> Jacobimatrix, wenn diese jedoch wieder nicht quadratisch
> ist stehe ich wieder ohne Plan da.

Die Matrix braucht nicht quadratisch zu sein, damit die dadurch dargestellte Abbildung injektiv ist.

Es muss ja bloß der Kern trivial sein.

Bezug
                                
Bezug
Lokale Injektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 01.03.2009
Autor: Phileas

Perfekt, das hilft mir weiter, Danke.
Hab da ein paar kleine Schwächen in linearer Algebra :-).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]