matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieLognormal-Verteilt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Lognormal-Verteilt
Lognormal-Verteilt < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lognormal-Verteilt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 06:36 Sa 04.05.2013
Autor: sissile

Aufgabe
Der Radius von kugelförmigen Teilchen sei uniform verteilt auf dem Intervall [10,100] [mm] \mu [/mm] m.
a) Berechne die Dichte des Volumens
b) Von einer Zufallsvariable X sagt man, dass sie lognormalverteilt ist, wenn log(X) normalverteilt ist. Zeige : Wenn der Radius lognormal verteilt ist, dann ist auch das Volumen lognormal verteilt

Hallo

a) Hab ich geschafft.
Ergebnis ist: [mm] f_V [/mm] (x)= [mm] \begin{cases} 1/90 \frac{1}{\wurzel[3]{6^2 b \pi}}, & \mbox{für } 4 \pi/3 * 10^3\le x \le 4\pi/3* 10^6 \\ 0, & \mbox{sonst } \end{cases} [/mm]
Nicht für's nachrechnen eurerseits gedacht (wenn ihr wollt natürlich gerne) sondern primär, wenn ich das Ergebnis bei b) brauche

b)
R ~ lognormal d.h. log(R) ~ [mm] \mathcal{N} (\mu, \sigma^2) [/mm]
log(V)= log(4/3 [mm] \pi R^3 [/mm] )= [mm] log(\frac{4 \pi}{3}) [/mm] + 3 log(R)
Nun dachte ich die Verteilungsfunktion  [mm] F_{log(V)} [/mm] auszurechnen.
[mm] F_{log(V)} [/mm] =P( R [mm] \in log^{-1}(g^{-1} ((-\infty,b]))= [/mm] P(R [mm] \in log^{-1}((0,exp(\frac{b-log(\frac{4\pi}{3})}{3})]))= [/mm] P(log(R) [mm] \in (0,exp(\frac{b-log(\frac{4\pi}{3})}{3})])) [/mm]
= [mm] F_{log(R)} (exp(\frac{b-log(\frac{4\pi}{3})}{3})) [/mm] - [mm] F_{log(R)} [/mm] (0)

mit g(r)= 4/3 [mm] \pi r^3 [/mm]

Ich kann mich geirrt haben bei der Berechnung der Verteilungsfunktion, aber wie kann ich nun einsehen ob log(V) normalverteilt ist?


        
Bezug
Lognormal-Verteilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Sa 04.05.2013
Autor: sissile

Hallo
Ich hätte noch kurz eine Frage dazu als Einschub:

Ist der Weg über die Verteilungsfunktion gar der falsche?
Wie kann man sonst allgemein zeigen wie eine Zufallsvariable verteilt ist? Ich dachte das macht man allgemein mit der Verteilungsfunktion?

lg

Bezug
        
Bezug
Lognormal-Verteilt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Mo 06.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]