matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmusgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Logarithmusgleichung
Logarithmusgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusgleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:05 Mo 17.03.2008
Autor: AbraxasRishi

Aufgabe
lg(x-1) + lg(2-x) = lg(x+2) + lg(x-5)

x = ?

Hallo!

Kann mir jemand folgende Ansätze korrigieren u. Auskunft über meinen Fehler geben:

lg ( [mm] 2x-x^2-2+x) [/mm] = lg [mm] (x^2-5x+2x-10) [/mm]    /habe Logarithmusgesetze verwendet und  ausmultipliziert.
[mm] 2x^2-6x-8=0 [/mm]   /Kann ich die Logarithmen auf beiden Seiten kürzen und quadratische Gleichungs-Formel verwenden?

Danke im Voraus

Grüße
Angelika

        
Bezug
Logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mo 17.03.2008
Autor: Arvi-Aussm-Wald

also logarythmen kann man nicht einfach so kürzen, du kannst aber die umkehrfkt anwenden.
in diesem fall kommt es aber auf das selbe raus (wendest auf beiden seiten [mm] e^x [/mm] an, damit fällt der ln komplett weg)

also wenn dich nicht verrechnet hasst, stimmt es soweit und du kannst z.b die p-q formel zum lösen verwenden.

Bezug
                
Bezug
Logarithmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mo 17.03.2008
Autor: AbraxasRishi

Hallo und Danke für deine Antwort!

[mm] x1,2 = \bruch{6+-\wurzel{36+64}}{4} [/mm]

Ich bekomme jedoch als Lösungen 4 und -1 obwohl nach gegebener Lösung 0 das Ergebniss sein müsste!
(natürlich meinte ich nicht Kürzen von lg sondern beide Seiten  [mm] 10^x) [/mm]

Danke für die Geduld

Angelika

Bezug
                        
Bezug
Logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Mo 17.03.2008
Autor: Arvi-Aussm-Wald

hmm...
also ich habs noch mal nachgerechnet und komme auch auf 4 und -1. (sowohl per hand, als auch per cas)

kann es sein das deine lösung vielleicht falsch ist, oder du dich vertippt hasst bei der aufgabenstellung?

Bezug
                        
Bezug
Logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mo 17.03.2008
Autor: XPatrickX

Hey,

also falls du dich nicht bei der Aufgabe vertippt hast, dann stimmen die Lösungen 4 und -1! Habe es extra noch einmal mit dem PC kontrolliert.

Gruß Patrick

Bezug
        
Bezug
Logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Mo 17.03.2008
Autor: AbraxasRishi

Wenn es sich nicht um einen Druckfehler handelt, sollte das Ergebniss stimmen( Mathematik-Ein Lehr und Übungsbuch Band 1 Autor:Gellrich)
Kapitel: Gleichungen mit Potenzen Wurzeln und Logarithmen Aufgabe: 2.2231


Gruß
Angelika

Bezug
                
Bezug
Logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:07 Mo 17.03.2008
Autor: AbraxasRishi

In Ordung! Danke für die Auskunft!

Gruß
Angelika

Bezug
                        
Bezug
Logarithmusgleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 17.03.2008
Autor: AbraxasRishi

Aufgabe
Ich habe noch 2 weitere Gleichungen, wo ich als Ergebniss 0 erhalten sollte:
1) lg(x-3)-lg(2x+7) = lg(3x +1)-lg(x-5) und
2) lg(x+3)-lg(3x-5) = lg(x-1)-lg(2x-6)

Meine Überlegungen sind:
1)
lg(x-3)(x-5) = lg(3x+1)(2x+7) =
[mm] lg(x^2-5x-3x+15) [/mm] = [mm] lg(6x^2+2x+21x+7) [/mm]
0 = [mm] 5x^2+31x-8 [/mm]
[mm]x1,2= \bruch{-31+- \wurzel{961-20*-8}}{10} [/mm]
x1  = -6,448   x2 = 0,24813

2)
lg(x+3)(2x-6) = lg(x-1)(3x-5)
[mm] 2x^2-18 [/mm] = [mm] 3x^2-8x+5 [/mm]
[mm]x1,2= \bruch{8+- \wurzel{64-92}}{2} [/mm]
Nicht definiert.


Kann mir diese Gleichungen bitte noch jemand korrigieren?


Danke vielmals

Gruß
Angelika




Bezug
                                
Bezug
Logarithmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mo 17.03.2008
Autor: Zneques

Hallo,

Stimmt so.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]