matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLogarithmus naturalis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Logarithmus naturalis
Logarithmus naturalis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus naturalis: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 23:01 Mo 24.07.2017
Autor: maba1984

Aufgabe
Bestimmen Sie jeweils alle Lösungen x [mm] \varepsilon \IR [/mm] der Gleichung für:

a) [mm] ln(x)^{2} [/mm] - ln(x) = 2
b) e^sin(x) = 1

Hallo, leider fehlen mir hierzu die Lösungsaufgaben. Könnte mir jemand den Lösungsweg aufzeigen, besonders für a und wie man die ln umformt bzw. was notwendig ist an dieser Stelle.

Vielen Dank im Vorraus:)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmus naturalis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 24.07.2017
Autor: Herby

Hallo Maba,

und herzlich [willkommenmr]

> Bestimmen Sie jeweils alle Lösungen x [mm]\varepsilon \IR[/mm] der

Anm.: ein bisschen mager diese Angabe, denn für alle [mm] x\in\IR [/mm] gilt das ja wohl nicht


> Gleichung für:
>  
> a) [mm]ln(x)^{2}[/mm] - ln(x) = 2

Ich gehe mal davon aus, du meinst:

[mm] ln^2(x)-ln(x)=2 [/mm]

Wenn dem so sein sollte, dann umstellen

[mm] ln^2(x)-ln(x)-2=0 [/mm]

- Substitution ln(x)=u
- Quadratische Gleichung lösen
- Rücksubstitution
- Lösungen ermitteln


>  b) e^sin(x) = 1

Was muss ich denn für [mm] \green{'irgendwas'} [/mm] einfügen, damit [mm] e^{\green{irgendwas}}=1 [/mm] ist?

Daraus folgt für Aufgabe b: .....

Grüße
[Dateianhang nicht öffentlich] Herby

Bezug
                
Bezug
Logarithmus naturalis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Di 25.07.2017
Autor: Diophant

Hallo Herby,

> >
> > a) [mm]ln(x)^{2}[/mm] - ln(x) = 2

>

> Ich gehe mal davon aus, du meinst:

>

> [mm]ln^2(x)-ln(x)=2[/mm]

>

das ist in diesem Fall gleichbedeutend. Die Schreibweise aus dem Themenstart ist aber mittlerweile fast durchgehend üblich, soweit mir bekannt ist (die Schreibweise [mm] f^2(x) [/mm] ist ja mehrdeutig, denn es kann auch [mm] f^2(x)=f(f(x)) [/mm] gemeint sein).


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]