matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Logarithmus
Logarithmus < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 11.03.2010
Autor: manolya

Aufgabe
Berechnung der Aufgabe

Hallo alle zusammen :),

also ein Kapital von 5000€  wird mit einem jährlichen Zinssatz von 3,5% verzinst.

a)
So nun muss ich beweisen, dass das Wachstum des Kapitals durch die folgende Exponentialfunktion K(t)= 5000* [mm] 1,035^t [/mm] beschrieben werden kann.
--> Kann mir Jemand einen guten Tipp geben:)


b) Nach welcher zeit habe sich ds Kapital verdoppelt( da muss ich 10 000= [mm] 5000*1,035^t [/mm]   aber soll ich zunächst mal Logarithmieren?)


        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 11.03.2010
Autor: leduart

Hallo
Da das Kapital pro Jahr um den Faktor 1.035 wächst, wächst es in t Jahren um [mm] 1.035^t. [/mm] dabei muss klar sein, dass man t in Jahren rechnet (eigentlich muss da statt t t/(1y) stehen.
ich würde vor dem log. durch 5000 teilen.
Gruss leduart

Bezug
        
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Do 11.03.2010
Autor: manolya

Hallo:)


Also ich verstehe leider diese mUsteraufgabe nicht und wäre Euch dankbar, wenn ihr mir dies erklären könntet:)

Ich muss den Schnittpunkt ermitteln:

[mm] f(x)=4*1,2^x [/mm]
[mm] g(x)=2*1,5^x [/mm]

f(x)=g(x)=
[mm] 4*1,2^x=2*1,5^x [/mm]
[mm] log(4*1,2^x)=log(2*1,5^x) [/mm]
log4+x*log1,2=log2+x*log1,5  <--warum wird das aufeinmal +
x*(log1,5-log1,2)=log4-log2  <-- ..und das -?????
x=3,11


Danke im Voraus für eure Bemühungen:)

Gruß

Bezug
                
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Do 11.03.2010
Autor: schachuzipus

Hallo manolya,

du weißt doch: für neue Aufgaben einen neuen thread eröffnen !!!!!!!!!!!!!

> Hallo:)
>
>
> Also ich verstehe leider diese mUsteraufgabe nicht und
> wäre Euch dankbar, wenn ihr mir dies erklären könntet:)
>  
> Ich muss den Schnittpunkt ermitteln:
>  
> [mm]f(x)=4*1,2^x[/mm]
> [mm]g(x)=2*1,5^x[/mm]
>  
> f(x)=g(x)=
>  [mm]4*1,2^x=2*1,5^x[/mm]
>  [mm]log(4*1,2^x)=log(2*1,5^x)[/mm]
>  log4+x*log1,2=log2+x*log1,5  <--warum wird das aufeinmal  +

Du solltest dir schleunigst die Logarithmusgesetze ansehen!

Sonst wird das nix ...

Es ist [mm] $\log_c(a\cdot{}b)=\log_c(a)+\log_c(b)$ [/mm]

Hier also für die rechte Seite [mm] $\log(2\cdot{}1,5^x)=\log(2)+\log(1,5^x)$ [/mm]

Und weiter mit dem Gesetz [mm] $\log_c(a^b)=b\cdot{}\log_c(a)$ [/mm] ...

>  x*(log1,5-log1,2)=log4-log2  <-- ..und das -?????

Na, die obige Gleichung umstellen, alles mit x nach rechts, alles ohne x nach links (und dann noch die Seiten vertauschen: [mm] $a=b\gdw [/mm] b=a$), daher die "-"

>  x=3,11
>  
>
> Danke im Voraus für eure Bemühungen:)
>  
> Gruß

LG

schachuzipus

Bezug
                        
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Do 11.03.2010
Autor: manolya

aa> Hallo manolya,
>  
> du weißt doch: für neue Aufgaben einen neuen thread
> eröffnen !!!!!!!!!!!!!

Ja ich dachte, dass das si emeint war mit dem neune Tread öffnen. Tut mir leid . Werde das in Zukunft machen.

>  
> Du solltest dir schleunigst die Logarithmusgesetze
> ansehen!
>  
> Sonst wird das nix ...

Tut mir leid, dass ich andauernd fragen muss. Ich habe dieses Thema seit zwei Tagen.

GRUß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]