matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Logarithmus
Logarithmus < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Di 30.06.2009
Autor: agination

Aufgabe
Welchen Wert (in Abhängigkeit von k) besitzt [mm] log(\wurzel{9999} [/mm] + [mm] \wurzel{9998}), [/mm] wenn [mm] log(\wurzel{9999} [/mm] - [mm] \wurzel{9998})= [/mm] k ist? Finde eine Verallgemeinerung.

Hallo! Ich habe leider überhaupt keine Ahnung was ich hier machen soll :( kann mir jemand helfen?
Habe auf die Logarithmengesetze geguckt. Nur kann ich z.B. mit der Wurzeldarstellung nichts anfangen.


Ich bin dankbar für jeden Tipp oder Ansatz. :)
LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Di 30.06.2009
Autor: qsxqsx

log (a + b) = log(a) + log (1 + b/a) und  log (a - b) = log(a) + log (1 - b/a), hilft das was?

Bezug
                
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 30.06.2009
Autor: agination

Danke für die schnelle Reaktion, aber ich habe weiterhin Fragen.

Das hilft mir irgendwie nicht viel weiter.
habe dann also [mm] log(\wurzel{9999}- \wurzel{9998})=k [/mm] mit Ihrer Formel gemacht. Dabei erhalte ich:
[mm] log(\wurzel{9999} [/mm] )+ log ( 1 - [mm] \wurzel{9999}/ \wurzel{9998})= [/mm] k, dann kommt weiter: log(99,99) + log (1-1) =k
=1,9999+ log(0)=k

das kommt mir voll falsch vor. LG

Bezug
                        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Di 30.06.2009
Autor: Zwerglein

Hi, agination,

sieht das nicht sehr nach der Verwendung der 3. binomischen Formel aus?

[mm] (a+b)(a-b)=a^2-b^2 [/mm]

Bei Dir mit a = [mm] \wurzel{9999} [/mm] und b = [mm] \wurzel{9998} [/mm]
ist [mm] a^{2} [/mm] - [mm] b^{2} [/mm] = 1.

Wenn man dann noch bedenkt, dass log((a+b)(a-b)) = log(a+b) + log(a-b) ist, sollte doch was Vernünftiges rauskommen, oder?!

mfG!
Zwerglein

Bezug
                                
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 30.06.2009
Autor: agination

super :) das mit der binomischen Formel, da wäre ich auf keinen Fall drauf gekommen :) danke dafür.
Wie Sie nun am Ende meinen,es würde log((a+b)(a-b)) = log(a+b) + log(a-b) gelten.
Muss ich dann für log(a-b) gleich k setzen? und was erhalte ich dann? einfach log(a+b)+ k kann ich ja nicht so stehen lassen, da ja nach einem Wert in Abhängigkeit von k gefragt wird.

Grüße

Bezug
                                        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 30.06.2009
Autor: Zwerglein

Hi, agination,

naja: Die Frage lautete doch:

Welchen Wert (in Abhängigkeit von k) besitzt [mm] log(\wurzel{9999}+\wurzel{9998}) [/mm] (...)?

Nun: Nach den von mir erwähnten Umformungen ergibt sich:
[mm] log(\wurzel{9999}+\wurzel{9998}) [/mm] = - k

mfG!
Zwerglein


Bezug
        
Bezug
Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 30.06.2009
Autor: qsxqsx

aja und bezüglich wurzeldarstellung : [mm] log(\wurzel{a}) [/mm] = 1/2 * log(a) , das weisst du doch..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]