matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationLogarithmische Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Logarithmische Ableitung
Logarithmische Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmische Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:25 Fr 25.05.2012
Autor: Hejo

Aufgabe
Berechnen Sie mittels logarithmischer Differentation für die nachfolgende Funktion f  die erste Ableitung [mm] f^\prime, [/mm] die Änderungsrate [mm] \varrho_f [/mm] und die Elastizität [mm] \varepsilon_f. [/mm]

a) f(x)=(2x)^\sin(x)
b) f(x)=x^\frac{1}{x}
c) f(x)=(1+\frac{1}{x})^x

Hey,
ich brauche nur mal ne Korrektur...
zu a)
f(x)=(2x)^\sin(x)
f^\prime(x)=f(x)*(\ln(2x)^{\sin(x)})^\prime=f(x)*(\sin(x)*\ln(2x))^\prime
f^\prime(x)=(2x)^{\sin(x)}*(\cos(x)*\ln(2x)+\sin(x)*\frac{1}{x})

Änderungsrate :
[mm] \varrho_f [/mm] = \frac{f(x)^\prime}{f(x)}=\cos(x)*\ln(2x)+\sin(x)*\frac{1}{x}

Elastizität
[mm] \varepsilon_f=[/mm] \frac{f(x)^\prime}{f(x)}*x=(\cos(x)*\ln(2x)+\sin(x)*\frac{1}{x})*x=x*\cos(x)*\ln(2x)+\sin(x)


Stimmt das so?


        
Bezug
Logarithmische Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Fr 25.05.2012
Autor: leduart

Hallo
alles richtig.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]