matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLogarithmen/Wurzeln kompl. Fkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Logarithmen/Wurzeln kompl. Fkt
Logarithmen/Wurzeln kompl. Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen/Wurzeln kompl. Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:49 Do 11.05.2006
Autor: madde_dong

Aufgabe
Zeige: Für [mm] h(z):=z^l [/mm] ist [mm] \frac{1}{l}Log(z) [/mm] holomorpher Logarithmus und [mm] \sqrt[k]{z}^l [/mm] holomorphe k-te Wurzel auf [mm] \IC\setminus\IR_{\le 0} [/mm]

Hallo,

ich brauch mal wieder Hilfe. Wenn L(z) Logarithmusfunktion zu h(z) ist, heißt das doch, dass [mm] e^{L(z)}=h(z) [/mm] sein muss, oder?
Aber [mm] e^{\bruch{1}{l}Log(z)}=z^{\bruch{1}{l}} [/mm] - oder?
Bei der Wurzel sieht es eigentlich einfach aus - aber leider gelten ja die üblichen Potenzgesetze aus dem Reellen nicht, also kann ich nicht einfach sagen [mm] (\sqrt[k]{z}^l)^k=((e^{\bruch{1}{l}Log(z)})^l)^k [/mm] = [mm] e^{l Log(z)}=z^l... [/mm]
Ich habe noch einige Aufgaben, die hierauf aufbauen, aber ohne wirklich verstanden zu haben, was ich da mache, kann ich die vergessen...
Bitte helft mir, ich steh aufm Schlauch!

        
Bezug
Logarithmen/Wurzeln kompl. Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 13.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]