matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLog Umformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Log Umformung
Log Umformung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log Umformung: Beweis
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 20.01.2010
Autor: PowerBauer

Aufgabe
Zeige, dass
[mm] log_{b} u^{n} [/mm] = n * [mm] log_{b} [/mm] u

ist bestimmt super einfach - aber bei mir hakt es im Moment sehr. Ich habe das immer nur benutzt, aber nie über das Warum nachgedacht.
Ausgehend von der Grundlage des Log. müsste gelten:
[mm] log_{b} u^{n} [/mm] = x
dann ist
[mm] b^{x} [/mm] = [mm] u^{n} [/mm]
aber damit komme ich auch nicht weiter...
jmd. eine Idee?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 20.01.2010
Autor: schachuzipus

Hallo PowerBauer und herzlich [willkommenmr],

> Zeige, dass
> [mm]log_{b} u^{n}[/mm] = n * [mm]log_{b}[/mm] u
>  ist bestimmt super einfach - aber bei mir hakt es im
> Moment sehr. Ich habe das immer nur benutzt, aber nie über
> das Warum nachgedacht.
>  Ausgehend von der Grundlage des Log. müsste gelten:
>  [mm]log_{b} u^{n}[/mm] = x
>  dann ist
>  [mm]b^{x}[/mm] = [mm]u^{n}[/mm]
>  aber damit komme ich auch nicht weiter...
>  jmd. eine Idee?

Verwende das Logarithmusgesetz für Produkte:

[mm] $\log_{b}(u\cdot{}v)=\log_b(u)+\log_b(v)$ [/mm]

Hier also [mm] $\log_b\left(u^n\right)=\log_b(\underbrace{u\cdot{}u\cdot{}....\cdot{}u}_{\text{n-mal}})=\underbrace{\log_b(u)+\log_b(u)+....+\log_b(u)}_{\text{n-mal}}=n\cdot{}\log_b(u)$ [/mm]

Formal schöner ohne Pünktchen per vollst. Induktion nach n ...

Kennst du die?


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Log Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mi 20.01.2010
Autor: abakus


> Hallo PowerBauer und herzlich [willkommenmr],
>  
> > Zeige, dass
> > [mm]log_{b} u^{n}[/mm] = n * [mm]log_{b}[/mm] u
>  >  ist bestimmt super einfach - aber bei mir hakt es im
> > Moment sehr. Ich habe das immer nur benutzt, aber nie über
> > das Warum nachgedacht.
>  >  Ausgehend von der Grundlage des Log. müsste gelten:
>  >  [mm]log_{b} u^{n}[/mm] = x
>  >  dann ist
>  >  [mm]b^{x}[/mm] = [mm]u^{n}[/mm]
>  >  aber damit komme ich auch nicht weiter...
>  >  jmd. eine Idee?
>
> Verwende das Logarithmusgesetz für Produkte:
>  
> [mm]\log_{b}(u\cdot{}v)=\log_b(u)+\log_b(v)[/mm]
>  
> Hier also
> [mm]\log_b\left(u^n\right)=\log_b(\underbrace{u\cdot{}u\cdot{}....\cdot{}u}_{\text{n-mal}})=\underbrace{\log_b(u)+\log_b(u)+....+\log_b(u)}_{\text{n-mal}}=n\cdot{}\log_b(u)[/mm]
>  
> Formal schöner ohne Pünktchen per vollst. Induktion nach
> n ...

Einfacher: Zeige, dass [mm] b^{log_{b} u^{n}}=b^{n log_{b}u} [/mm] ist.
Der rechte Term lässt sich in [mm] (b^{log_{b}u})^n [/mm] umschreiben.
Gruß Abakus

>  
> Kennst du die?
>  
>
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>
>
> LG
>  
> schachuzipus


Bezug
                
Bezug
Log Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 20.01.2010
Autor: PowerBauer

Vielen Dank für die schnelle Antwort - (Pünktchen reichen mir...) ;)

PB

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]