matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösungen für eine DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Lösungen für eine DGL
Lösungen für eine DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen für eine DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 21.04.2008
Autor: Woaze

Aufgabe
Es sei x0 element der Reellen Zahlen. Bestimme die Lösungen für das Anfangswertproblem: [mm] \bruch{dx}{dt} [/mm] = wurzel aus xbetrag

Wann ist die Lösung eindeutig?

Meine Lösung ist: [mm] \lambda [/mm] = [mm] \pm\bruch{1}{2}(t- \wurzel[2]{x0}. [/mm]

Aber wie und wo ist diese Lösung eindeutig. Hängt das von x0 ab oder vom Intervall? Der Intervall ist doch ganz R.

Ich würde da unbedingt bis morgen noch die Lösung brauchen, währe echt nett wenn da jemand was dazu wüsste.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungen für eine DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mo 21.04.2008
Autor: MathePower

Hallo Woaze,

[willkommenmr]

> Es sei x0 element der Reellen Zahlen. Bestimme die Lösungen
> für das Anfangswertproblem: [mm]\bruch{dx}{dt}[/mm] = wurzel aus
> xbetrag
>  
> Wann ist die Lösung eindeutig?
>  Meine Lösung ist: [mm]\lambda[/mm] = [mm]\pm\bruch{1}{2}(t- \wurzel[2]{x0}.[/mm]

Dieses Lösung stimmt nicht. [notok]

>  
> Aber wie und wo ist diese Lösung eindeutig. Hängt das von
> x0 ab oder vom Intervall? Der Intervall ist doch ganz R.

Das hängt sicher vom Intervall ab.

>  
> Ich würde da unbedingt bis morgen noch die Lösung brauchen,
> währe echt nett wenn da jemand was dazu wüsste.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
Lösungen für eine DGL: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:36 Mo 21.04.2008
Autor: Woaze

Was stimmt da nicht:

[mm] \bruch{dx}{dt} [/mm] = [mm] \wurzel[2]{|x|} [/mm]

[mm] \bruch{dx}{\wurzel[2]{|x|}} [/mm] = dt

aufintegrieren [mm] \integral_{x0}^{\lambda(t)}{\bruch{dx}{\wurzel[2]{|x|}}} [/mm] = t

umformen ergiebt: [mm] |\lambda(t)| =\bruch{1}{2}(t -2\wurzel[2]{x0})^{2} [/mm]

Wie jetzt mit dem Betrag umgegangen wird und wie die Intervalle gewählt werden müssen, dass weiß ich nicht.

Bezug
                        
Bezug
Lösungen für eine DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Di 22.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]