matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLösungen des Gleicungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Lösungen des Gleicungssystem
Lösungen des Gleicungssystem < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen des Gleicungssystem: Bestimmen aller Lösungen+Menge
Status: (Frage) überfällig Status 
Datum: 15:43 Mo 12.06.2006
Autor: Eschi

Aufgabe
Eine (4x4)-Matrix A besitze den Rang 2. Das Gleichungssystem A*x(vektor)=b(vektor) besitze eine Lösung x(pfeil)0>>(xo-vektor). Ist dies die einzige Lösung? Beschreiben Sie die Menge aller Lösungen des Gleichungssystem.

Hallo. Geh ich erstmal richtig in der Annahme das dies ein inhomogenes Gleichungssystem ist, weil bei einer 4x4-Matrix der Rang 2 ist und es deshalb kein Nullvektor besitzt, oder ist der anssatz falsch?

x0 ist eine Lösung. Wie komme ich die anderen heraus? und kann ich die Menge als: x(vektor) ist Element von [mm] R^4 [/mm] mit x(vektor)=Xo(vektor) +a1*x1(vektor)+a2*x2(vektor+...+an*xn(vektor), a1,...,an ist Elemtent von R)
beschreiben?

Danke für eure Hilfe!
Grüße Eschi

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungen des Gleicungssystem: Bitte Formeln benutzen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Mo 12.06.2006
Autor: Event_Horizon

So als Hinweis:

Wenn du dich bemühst, die Formeln richtig zu schreiben, erhöht das die Lesbarkeit ungemein. Die mathematik erfordert schon genug denkerische Leistung, da muß man das nicht zusätzlich verkomplizieren.

Wie wäre sowas;

$A [mm] \vec [/mm] x = b [mm] \vec [/mm] x$

Das erzeugt man, indem man das eingibt:

§A /vec x = b /vec x§

allerdings mit dem Dollar-Zeichen statt der Paragraphen und dem Backslash statt dem normalen Slash.

Als naturwissenschaftlicher Student wirst du eh früher oder später TeX lernen müssen, und das hier ist bis auf einige Details nichts anderes.

Das ist nicht böse gemeint, aber sowas wie

x(vektor)=Xo(vektor) +a1*x1(vektor)+a2*x2(vektor+...+an*xn(vektor) ist doch etwas unleserlich, oder?

Bezug
        
Bezug
Lösungen des Gleicungssystem: Korrektur
Status: (Frage) überfällig Status 
Datum: 11:21 So 18.06.2006
Autor: Eschi

Aufgabe
Eine (4x4)Matrix A besitze den Rang 2. Das Gleichungssystem
$A [mm] \vec [/mm] x = [mm] \vec [/mm] b$
besitze eine Lösung [mm] $\vec [/mm] xo$ .
1. Ist dies die einzige Lösung?
2. Beschreiben Sie die Menge aller Lösungen des Gleichungssystem.



Kann mir jemand helfen die zwei Fragen zu lösen. Kann man die eine Lösung als als Nullvektor sehen, so das es mindestens das als Lösung gibt oder betrachtet man dies als inhomogenes Gleichungssystem?

1. Ist dies die einzige Lösung?: nein, nach der Dimensionsformel gibt es zwei    freibare Parameter. , richtig?
2. Beschreiben sie die Menge
L= [mm] $\vec [/mm] x$ ist Element von [mm] r^4 [/mm] mit [mm] $\vec [/mm] x$= [mm] $\vec [/mm] xo$ + a1* $vec x1$ + a2* [mm] $\vec [/mm] x2$ + a3* [mm] $\vec [/mm] x3$ , a1,...,a4 Element von R
Kann man das so schreiben?

Bezug
                
Bezug
Lösungen des Gleicungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 20.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]