matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabLösung von unterbestimmten Gle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Matlab" - Lösung von unterbestimmten Gle
Lösung von unterbestimmten Gle < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von unterbestimmten Gle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:39 Di 26.05.2009
Autor: mathenull99

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, ich bin neu hier und hab auch noch in keinem anderen Forum bis
jetzt nachgefragt, also:

ich habe zwei vektoren X1 und X2 mit jeweils x und y-koordinaten und der länge 7 (also 7x2) , und ein glgs-system in vektorieller schreibweise mit

(x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1)* f = 0

mit f = (f11 f12 f13 f21 f22 f23 f31 f32 f33)'.

F = [mm] \pmat{ f11 & f12 & f13 \\ f21 & f22 & f23 \\ f31 & f32 & f33 } [/mm]

bzw. das homogene lineare GLS: A*f = 0 , wobei A eine (7x9 Matrix ist).

zusätzlich gilt noch die Bedingung det( F )=0

Wie löse ich nun in Matlab dieses glgsystem Af=0 ohne die triviale lösung zu erhalten ?

Soweit ich weiss, gibt es zwei linear unabh. lösungen f1 und f2 , welche dann die Matrizen F1 und F2 ergeben und daraus wird dann mittels linearkombination

F = [mm] \alpha* [/mm] F1 + (1 - [mm] \alpha)* [/mm] F2 bzw. mit der Singularitätsbedingung

det( F ) = det ( [mm] \alpha* [/mm] F1 + (1 - [mm] \alpha)* [/mm] F2   ) = 0

die lösung berechnet, aber zuerst muss ich mal zu f1 und f2 kommen !!

        
Bezug
Lösung von unterbestimmten Gle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Di 02.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]