matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung für folgende Differenti
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung für folgende Differenti
Lösung für folgende Differenti < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung für folgende Differenti: Idee?
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 13.01.2010
Autor: andibeck

Aufgabe
cos (y) * y' = x

Hallo allerseits
Mathe is schon nen bischen her bei mir, brauche trotzdem eine Lösung für diese Differentioalgleichung.
Schon mal vielen Dank!

PS.: Man is das kompliziert hier den ersten Post zu erstellen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung für folgende Differenti: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 13.01.2010
Autor: fred97

Tipp:

               "Trennung der Veränderlichen"

Gruß FRED

Bezug
                
Bezug
Lösung für folgende Differenti: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mi 13.01.2010
Autor: andibeck

Vilelen Dank für die schnelle Antwort! So langsam kommts mir auch wieder bekannt vor;)
Allerdings ist mir grad aufgefallen das in meiner Aufgabenstellung das x eine konstante ist. Funktioniert es trotzdem mit dem Trennen der Variablen?


Bezug
                        
Bezug
Lösung für folgende Differenti: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 13.01.2010
Autor: schachuzipus

Hallo,

> Vilelen Dank für die schnelle Antwort! So langsam kommts
> mir auch wieder bekannt vor;)
>  Allerdings ist mir grad aufgefallen das in meiner
> Aufgabenstellung das x eine konstante ist. [haee]

Es ist $y=y(x)$ und damit [mm] $y'=y'(x)=\frac{dy}{dx}$ [/mm]

Also doch TdV ;-)

> Funktioniert es trotzdem mit dem Trennen der Variablen?
>    

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]