matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikLösung einer Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Lösung einer Ungleichung
Lösung einer Ungleichung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:44 Do 27.10.2005
Autor: Wimme

Hallo!!
ich habe hier folgende Aufgabe:
Zum Anbringen einer Holzlatte werden 72 Nägel benötigt. Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie viele Pälchen muss man kaufen, damit die Nägel zu 98% reichen?
Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!

P(x [mm] \ge72) \ge0.98 [/mm]

das habe ich dann gemacht zu:

[mm] \phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}}) [/mm] - [mm] \phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq [/mm] -0.02

nun weiß ich nicht, wie ich das weiter auflösen kann!

Wäre für jede Hilfe dankbar!

Gruß,
Wimme

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=22787

        
Bezug
Lösung einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 27.10.2005
Autor: Zwerglein

Hi, Wimme,

> Hallo!!
>  ich habe hier folgende Aufgabe:
>  Zum Anbringen einer Holzlatte werden 72 Nägel benötigt.
> Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie
> viele Pälchen muss man kaufen, damit die Nägel zu 98%
> reichen?
>  Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!
>  
> P(x [mm]\ge72) \ge0.98[/mm]
>  
> das habe ich dann gemacht zu:
>  
> [mm]\phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}})[/mm] -
> [mm]\phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq[/mm] -0.02
>  

Diese Umformung ist reichlich seltsam!

Aus P(X [mm] \ge [/mm] 72) [mm] \ge [/mm] 0,98

folgt doch erst mal:

1 - P(X [mm] \le [/mm] 71) [mm] \ge [/mm] 0,98

oder: P(X [mm] \le [/mm] 71) [mm] \le [/mm] 0,02

Und nun  verwenden wir die N-Vtlg. als Näherung (was wegen npq > 9 auch geht!):

[mm] \Phi(\bruch{71,5 - \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \le [/mm] 0,02

oder:

[mm] \Phi(\bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \ge [/mm] 0,98

Tafelwerk:

[mm] \bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}} \ge [/mm] 2,06

Substitution z = [mm] \wurzel{n} [/mm]
ergibt:
[mm] \bruch{5}{6}z^{2} [/mm] - [mm] 2,06*\wurzel{\bruch{5}{36}}*z [/mm] - 71,5 [mm] \ge [/mm] 0

Naja: Und diese quadratische Ungleichung musst Du nun lösen!
(PS: Vergiss' die Rücksubstitution n = [mm] z^{2} [/mm] nicht!
Mein Ergebnis: Man braucht mindestens 95 Nägel, also mindestens 5 Päckchen.)

mfG!
Zwerglein




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]