matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLösen von Exponenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Lösen von Exponenten
Lösen von Exponenten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Exponenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Do 11.07.2013
Autor: schwarzerName

Aufgabe
a) Vergleich der Exponenten
5^(3x+4) = 125
5^(3x+4) = [mm] 5^3 [/mm]
3x+4= -3
x= 1/3

b)Logarithmieren
[mm] 0,25^x [/mm] = 25
[mm] ln0,25^x [/mm] = ln25
xln(0,25) = ln25
= -2,322

Halle Leute,
Im Prinzip sind Aufgabe a) und b) ja gleich. Auf der einen Seite von dem gleichheitszeichen ist ein Exponent gegeben und auf der anderen nicht. Nur löse ich Aufgabe a) durch Vergleich der Exponenten und Aufgabe b) durch Logartihmieren. Meine Frage ist nun ob ihr mir sagen könnt woran ich sehe welchen Rechenweg ich nehmen muss. Ich hoffe ihr wisst was ich meine.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösen von Exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Do 11.07.2013
Autor: schachuzipus

Hallo schwarzerName und erstmal herzlich [willkommenmr],


> a) Vergleich der Exponenten
> 5^(3x+4) = 125
> 5^(3x+4) = [mm]5^3[/mm]
> 3x+4= -3

Das soll rechterhand wohl +3 lauten ...

> x= 1/3

Nö, dann wäre [mm] $5^{3x+4}=5^{3\cdot{}1/3+4}=5^{1+4}=5^5\neq 5^3=125$ [/mm]

>

> b)Logarithmieren
> [mm]0,25^x[/mm] = 25
> [mm]ln0,25^x[/mm] = ln25
> xln(0,25) = ln25 [ok]
> = -2,322

Keine Ahnung, habe keinen TR ...

Ich würde das auch nicht runden, sondern korrekt angeben, indem ich nach x auflösen würde ...

> Halle Leute,
> Im Prinzip sind Aufgabe a) und b) ja gleich. Auf der einen
> Seite von dem gleichheitszeichen ist ein Exponent gegeben
> und auf der anderen nicht. Nur löse ich Aufgabe a) durch
> Vergleich der Exponenten und Aufgabe b) durch
> Logartihmieren. Meine Frage ist nun ob ihr mir sagen könnt
> woran ich sehe welchen Rechenweg ich nehmen muss. Ich hoffe
> ihr wisst was ich meine.

Naja, bei $a)$ konntest du beide Seiten in der gleichen Basis (hier 5) schreiben, du hattest [mm] $\red 5^{3x+4} [/mm] \ = \ [mm] \red 5^{3}$ [/mm] und konntest damit die Exponenten vergleichen, hast dich nur verrechnet.

Eigentlich logarithmierst du ja im Schritt vor dem Vergleich der Exponenten beide Seiten (mit [mm] $\log_5$) [/mm] ...

Bei $b)$ kannst du nicht beide Seiten zur selben Basis schreiben ...

>

> Danke.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]