matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenLösen einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Lösen einer Gleichung
Lösen einer Gleichung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Mo 09.11.2009
Autor: angreifer

Aufgabe
Bestimmen Sie die Lösung folgender Gleichung:

d) [mm] a^{4} [/mm] + [mm] b^{4} [/mm] + [mm] x^{4} [/mm] = [mm] 2a^{2}b^{2} [/mm] + [mm] 2a^{2}x^{2} [/mm] + [mm] 2b^{2}x^{2} [/mm]

Ich habe angefangen mit:

[mm] a^{4} [/mm] + [mm] b^{4} [/mm] + [mm] x^{4} [/mm] = [mm] 2a^{2}b^{2} [/mm] + [mm] 2a^{2}x^{2} [/mm] + [mm] 2b^{2}x^{2} [/mm]

[mm] \gdw a^{4} [/mm] + [mm] b^{4} [/mm] + [mm] x^{4} [/mm] - [mm] 2a^{2}b^{2} [/mm]  = [mm] 2a^{2}x^{2} [/mm] + [mm] 2b^{2}x^{2} [/mm]

[mm] \gdw (a^{2}- b^{2})^{2} [/mm] = - [mm] x^{4} [/mm] + [mm] 2a^{2}x^{2} [/mm] + [mm] 2b^{2}x^{2} [/mm]

[mm] \gdw (a^{2}- b^{2})^{2} [/mm] = [mm] x^{2} (-x^{2} [/mm] + [mm] 2a^{2} [/mm] + [mm] 2b^{2}) [/mm]

Und jetzt komme ich nicht weiter...ich weiß nicht, wie ich die Gleichung nach x freistellen soll? Wäre sehr dankbar für einen Tipp!

Vielen Dank

Jesper

        
Bezug
Lösen einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mo 09.11.2009
Autor: glie


> Bestimmen Sie die Lösung folgender Gleichung:
>  
> d) [mm]a^{4}[/mm] + [mm]b^{4}[/mm] + [mm]x^{4}[/mm] = [mm]2a^{2}b^{2}[/mm] + [mm]2a^{2}x^{2}[/mm] +
> [mm]2b^{2}x^{2}[/mm]
>
> Ich habe angefangen mit:
>  
> [mm]a^{4}[/mm] + [mm]b^{4}[/mm] + [mm]x^{4}[/mm] = [mm]2a^{2}b^{2}[/mm] + [mm]2a^{2}x^{2}[/mm] +
> [mm]2b^{2}x^{2}[/mm]
>  
> [mm]\gdw a^{4}[/mm] + [mm]b^{4}[/mm] + [mm]x^{4}[/mm] - [mm]2a^{2}b^{2}[/mm]  = [mm]2a^{2}x^{2}[/mm] +
> [mm]2b^{2}x^{2}[/mm]
>  
> [mm]\gdw (a^{2}- b^{2})^{2}[/mm] = - [mm]x^{4}[/mm] + [mm]2a^{2}x^{2}[/mm] +
> [mm]2b^{2}x^{2}[/mm]
>  
> [mm]\gdw (a^{2}- b^{2})^{2}[/mm] = [mm]x^{2} (-x^{2}[/mm] + [mm]2a^{2}[/mm] + [mm]2b^{2})[/mm]
>  
> Und jetzt komme ich nicht weiter...ich weiß nicht, wie ich
> die Gleichung nach x freistellen soll? Wäre sehr dankbar
> für einen Tipp!


Hallo,

das ganze sieht doch sehr nach einer biquadratischen Gleichung aus, deshalb würde ich es anders umstellen:

[mm] $x^4+(-2a^2-2b^2)*x^2+a^4+b^4-2a^2b^2=0$ [/mm]

Substituiere jetzt [mm] $x^2=z$ [/mm] und du hast eine quadratische Gleichung für $z$.

Gruß Glie

>  
> Vielen Dank
>
> Jesper


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]