Lösbarkeit des Systems < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | A= [mm] \pmat{ -1 & 4 & 6 & 2 \\ 5 & -1 & -3 & -1 \\ 4 & 3 & 3 & 1 }
[/mm]
Finden Sie alle Vektoren b [mm] \in \IR³, [/mm] für welche das System Ax=b lösbar ist! |
Ich komme bei der oben genannten Aufgabe iwie nicht mehr weiter...
im ersten Schritt habe ich versuch die Matrix in Zeilenstufenform zu bringen:
1.Schritt:
5*I + II und 4*I + III
daraus resultierend ergibt sich folgende Lösung:
A= [mm] \pmat{ -1 & 4 & 6 & 2 |0 \\ 0 & 19 & 27 & 9 |0 \\ 0 & 19 & 27 & 9 |0 }
[/mm]
Aber wie soll da eine Lösung errechenbar sein ? Wenn ich jetzt die dritte Zeile minus die zweite Zeile rechne wird der Rang(A) = 2 sein , sprich ich dürfte ja 2 freie Parameter vergeben! Ist dieser Ansatz korrekt oder bin ich auf dem komplett falschen Weg?!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:53 So 27.01.2013 | Autor: | Helbig |
> A= [mm]\pmat{ -1 & 4 & 6 & 2 \\ 5 & -1 & -3 & -1 \\ 4 & 3 & 3 & 1 }[/mm]
>
> Finden Sie alle Vektoren b [mm]\in \IR³,[/mm] für welche das
> System Ax=b lösbar ist!
> Ich komme bei der oben genannten Aufgabe iwie nicht mehr
> weiter...
> im ersten Schritt habe ich versuch die Matrix in
> Zeilenstufenform zu bringen:
>
> 1.Schritt:
>
> 5*I + II und 4*I + III
>
> daraus resultierend ergibt sich folgende Lösung:
> A= [mm]\pmat{ -1 & 4 & 6 & 2 |0 \\ 0 & 19 & 27 & 9 |0 \\ 0 & 19 & 27 & 9 |0 }[/mm]
>
> Aber wie soll da eine Lösung errechenbar sein ? Wenn ich
> jetzt die dritte Zeile minus die zweite Zeile rechne wird
> der Rang(A) = 2 sein , sprich ich dürfte ja 2 freie
> Parameter vergeben! Ist dieser Ansatz korrekt oder bin ich
> auf dem komplett falschen Weg?!
Hallo SashA1111,
Dein Ansatz ist korrekt und Du bist auf dem komplett richtigen Weg!
Der Bildmenge hat die Dimension 2. Du brauchst jetzt nur zwei linear unabhängige Vektoren aus der Bildmenge angeben. Deren Linearkombinationen sind dann genau die $b$, für die $Ax=b$ eine Lösung hat.
Gruß,
Wolfgang
|
|
|
|
|
Ok , Danke für deine Antwort! In Zeilenstufenform sieht die Matrix wie folgt aus:
$ [mm] \pmat{ -1 & 4 & 6 & 2 |0 \\ 0 & 19 & 27 & 9 |0 \\ 0 & 0 & 0 & 0 |0 } [/mm] $
Wenn cih das jetzt richtig verstehe, kann ich die letzten beiden variablen ( angenommen die erste heißt a, zweite b, dritte c, vierte d) doch beliebig wählen. Also z.B. [mm] d=\mu [/mm] und [mm] c=\lambda [/mm] wenn ich das dann in die II - Gleichung einsetze erhalte ich ja :
19b [mm] +27\lambda +9\mu=0 [/mm] ==> [mm] b=-\bruch{6}{19}\lambda [/mm] - [mm] \bruch{9}{19}\mu
[/mm]
das wiederum in die I einsetzen daraus folgt dann:
a= [mm] 4\beta +6\lambda +2\mu [/mm]
ist die aufgabe dann gelöst ?
|
|
|
|
|
Hallo,
wie ich das sehe, hast du da die Lösungsmenge des homogenen LGS Ax=0 bestimmt, das ist nicht das, was du machen sollst.
Es gilt, dass die Menge der Spaltenvektoren von A ein Erzeugendensystem von Im(A) sind.
Da wo du jetzt den Rang(A) kennst und da gilt, dass Rang(A)=dim Im(A), weisst du, mit wie vielen Elementen dein EZS sogar eine Basis ist,d.h. mit diesen Kentnissen kannst du nun eine Basis des Bildes angeben.
Lg
|
|
|
|
|
hmm jetzt steh ich dann doch etwas neben mir...
Wenn ich also das Bild bestimmen muss, das folgere ich aus deiner Antwort, muss ich doch dann Spaltenumformungen durchführen um die Basis zu berechnen ?! Sprich [mm] A^T [/mm] und dann wieder den Gauß-Algorithmus anwenden ?
|
|
|
|
|
Habe nochmal mein Skript durchgeschaut...Wenn ich das richtig verstanden habe, muss ich [mm] A^T [/mm] aufstellen, da ja die linear unabhängigen spalten einer Matrix die Basis "darstellen".
[mm] A^T [/mm] = [mm] \pmat{ -1 & 5 & 4 |0 \\ 4 & -1 & 3 |0 \\ 6 & -3 & 3 |0 \\ 2 & -1 & 1 |0}
[/mm]
Nach Anwendung des Gauß-Algorithmus erhalten ich dann wieder folgende Form:
[mm] =\pmat{ -1 & 5 & 4 |0 \\ 0 & 19 & 19 |0 \\ 0 & 0 & 0 |0 \\ 0 & 0 & 0 |0}
[/mm]
somit sind a= [mm] \vektor{-1 \\ 5 \\ 4} [/mm] und b= [mm] \vektor{0 \\ 19 \\ 19} [/mm] Lösungen?!
Und abschließend sind doch dann obige Vektoren [mm] \alpha [/mm] *a + [mm] \beta [/mm] *b alle vektoren die das System Ax=b lösen ?!
|
|
|
|
|
Hallo SashA1111,
> Habe nochmal mein Skript durchgeschaut...Wenn ich das
> richtig verstanden habe, muss ich [mm]A^T[/mm] aufstellen, da ja die
> linear unabhängigen spalten einer Matrix die Basis
> "darstellen".
>
> [mm]A^T[/mm] = [mm]\pmat{ -1 & 5 & 4 |0 \\ 4 & -1 & 3 |0 \\ 6 & -3 & 3 |0 \\ 2 & -1 & 1 |0}[/mm]
>
> Nach Anwendung des Gauß-Algorithmus erhalten ich dann
> wieder folgende Form:
>
> [mm]=\pmat{ -1 & 5 & 4 |0 \\ 0 & 19 & 19 |0 \\ 0 & 0 & 0 |0 \\ 0 & 0 & 0 |0}[/mm]
>
> somit sind a= [mm]\vektor{-1 \\ 5 \\ 4}[/mm] und b= [mm]\vektor{0 \\ 19 \\ 19}[/mm]
> Lösungen?!
>
Besser Du wählst hier eine ander Bezeichnungsweise:
[mm]a_{1}=\vektor{-1 \\ 5 \\ 4}, \ a_{2}= \vektor{0 \\ 19 \\ 19}[/mm]
> Und abschließend sind doch dann obige Vektoren [mm]\alpha[/mm] *a +
> [mm]\beta[/mm] *b alle vektoren die das System Ax=b lösen ?!
Für alle Vektoren b, die der
Linearkombination [mm]\alpha*a_{1}+\beta*a_{2}[/mm] genügen,
ist das System Ax=b lösbar.
Gruss
MathePower
|
|
|
|
|
Hallo SashA1111,
> hmm jetzt steh ich dann doch etwas neben mir...
>
> Wenn ich also das Bild bestimmen muss, das folgere ich aus
> deiner Antwort, muss ich doch dann Spaltenumformungen
> durchführen um die Basis zu berechnen ?! Sprich [mm]A^T[/mm] und
> dann wieder den Gauß-Algorithmus anwenden ?
Ja, das hast Du richtig verstanden.
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:23 So 27.01.2013 | Autor: | SashA1111 |
Danke für die Hilfe !
|
|
|
|