Linerare Hülle + EZS in R3 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo!
Meine Aufgabe ist es die Standardbasis von [mm] \IR^3 [/mm] mit als Linearkombination von ((0,1,-1),(1,1,0),(0,0,2)) darzustellen, dh, ich muss durch Addition der Vektoren (bzw. der Vielfachen der Vektoren) auf ((1,0,0),(0,1,0),(0,0,1)) kommen.
Wie komme ich in diesem Fall auf die ganzen 1en, da wenn ich ein Vielfaches einer der Linearkombinationen ((0,1,-1),(1,1,0),(0,0,2)) nehme, so bin ich doch bereits über 1 und komme durch Addition nicht mehr herunter. Oder kann ich subtrahieren auch?
Danke & greetz
sonnenblumale
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:49 Do 10.11.2005 | Autor: | BennoO. |
Hi Sonnenblumale.
Ja, das könnte man so denken, wenn man sich das so anguckt, gel?!
Natürlich ist es möglich die Einheitsvektoren des [mm] R^3 [/mm] durch eine Linearkombination, der von dir angegebenen Vektoren, anzugeben. Bilde doch einfach mal eine Linearkombination der Vekrotren mit rellen Koeffizienten r,s,t, und setz diese dann gleich den Einheitsvektoren.
Ich geb dir mal ein Beispiel füs den ersten Einheitsvektor:
[mm] r*\vektor{0 \\ 0 \\ -1}+s* \vektor{1 \\ 1 \\ 0}+t* \vektor{0 \\ 0 \\ 2}= \vektor{1 \\ 0 \\ 0}
[/mm]
Daraus erhälst du ein LGS mit drei Unbekannten und drei Gleichungen, also ist es eindeutig lösbar.
I)r*0+s*1+t*0=1 --> s=1
II)1*r+1*s=0--->r+1=0--> r=-1
III)-r+2t=0-->1+2t=0-->2t=-1--> t=-0,5
Wenn du nun r,s,t in deine Linearkombination oben einsetzt, kommt der erste Einheitsvektor des [mm] R^3 [/mm] raus.
Viele Grüße Benno
|
|
|
|