matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikLineasierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Regelungstechnik" - Lineasierung
Lineasierung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineasierung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 17.09.2007
Autor: sarose

Aufgabe
Der zeitliche Verlauf einer Epidemie kann mathematisch beschrieben werden. Hierbei kann die gesamte Bevölkerung in vier Gruppen eingeteilt werden:

Gruppe 1: [mm] $\dot x_{1}(t)=-\alpha*x_{1}(t)*x_{2}(t) [/mm] $
Gruppe 2: [mm] $\dot x_{2}(t)=-x_{2}(t)+\alpha*x_{1}(t)*x_{2}(t)$ [/mm]

Gruppe 3: [mm] $\dot x_{3}(t)=\beta*x_{2}(t)$ [/mm]
Gruppe 4: [mm] $\dot x_{4}(t)=(1-\beta)*x_{2}(t)$ [/mm]


a) Linearisieren Sie die Gleichungen der Gruppe 1 und 2.

Lösung:
gruppe 1: [mm] $\dot x_{1}(t)= [/mm] - [mm] \alpha* x_{1}(t) [/mm] - [mm] \alpha* x_{2}(t)$ [/mm]

gruppe 2: [mm] $\dot x_{2}(t)= \alpha* x_{1}(t) [/mm] + [mm] (\alpha-1)* x_{2}(t)$ [/mm]

Leider ist es mir nicht möglich das Ganze nachzuvollziehen. Bisher habe ich nur eine Kurve linearisiert mit Hilfe der Steigung.
Das geht hier ja nicht, oder?

Gruß Sarose

        
Bezug
Lineasierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Di 18.09.2007
Autor: trinkMilch

Hi

ich habe das so errechnet / nachvollzogen ...

du hast ja Gruppe1 und Gruppe2, ich habe daraus
erstmal eine Matrix gemacht.

A= [mm] \vektor{Gruppe1 \\ Gruppe2} [/mm] = [mm] \vektor{-\alpha*x_{1}(t)*x_{2}(t) \\ -x_{2}(t)+\alpha*x_{1}(t)*x_{2}(t)} [/mm]

Linearisieren kannst du die Matrix indem du folgendermassen eine 2x2Matrix daraus erzeugst...(Ableitungen/Steigung)

[mm] A_{lin} [/mm] = [mm] \pmat{ 1. Zeile nach x_{1}(t) & 1. Zeile nach x_{2}(t) \\ 2. Zeile nach x_{1}(t) & 2. Zeile nach x_{2}(t) } [/mm]

[mm] A_{lin} [/mm] = [mm] \pmat{ -\alpha*x_{2}(t) & -\alpha*x_{1}(t) \\ \alpha*x_{2}(t) & \alpha*x_{1}(t)-1 } [/mm]

nun Alle Summanden die z.B. ein [mm] x_{1}(t) [/mm] als Faktor enthalten auf die linke Spalte der 2x2 Matrix und alle Summanden mit [mm] x_{2}(t) [/mm] als Faktor auf die rechte Spalte. Hier zu beachten... unten rechts steht: [mm] x_{1}(t)*\alpha-1 [/mm]
die -1 bleibt als Summand unten rechts stehen, weil sie kein [mm] x_{1}(t) [/mm]
als Faktor enthaelt.

und x(punkt)(t) = [mm] \vektor{x_{1}(punkt)(t) \\ x_{2}(punkt)(t)} [/mm] = [mm] A_{lin}*\vec{x}(t) [/mm] = [mm] A_{lin}*\vektor{x_{1}(t) \\ x_{2}(t)} [/mm]

daraus folgt...

[mm] \pmat{ -\alpha & -\alpha \\ \alpha & \alpha-1 } [/mm] * [mm] \vektor{x_{1}(t) \\ x_{2}(t)} [/mm] = [mm] \vec{x}(punkt)(t) [/mm] = [mm] \vektor{x_{1}(punkt)(t) \\ x_{2}(punkt)(t)} [/mm]


Hoffe das war so verständlich ;p



Bezug
                
Bezug
Lineasierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Fr 21.09.2007
Autor: sarose

Habe ich das richtig verstanden, dass du die partiellen Ableitungen bildest und anschließend addierst??

Gruß Sarose

Bezug
                        
Bezug
Lineasierung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Sa 22.09.2007
Autor: Herby

Hallo Sarose,

> Habe ich das richtig verstanden, dass du die partiellen
> Ableitungen bildest

genau [daumenhoch]

> und anschließend addierst??

nein, addiert wird hier nicht


[mm] \dot \vec{x(t)}=\pmat{ -\alpha & -\alpha \\ \alpha & (\alpha-1) }*\vektor{x_1(t) \\ x_2(t)} [/mm]


Liebe Grüße
Herby


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]