matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLinearformen und Dimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Linearformen und Dimension
Linearformen und Dimension < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearformen und Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 So 08.06.2008
Autor: xMariex

Aufgabe
Sei K ein Körper und V ein K-Vektorraum der Dimension n. Seien [mm]f_1,...,f_m\in V^{\*}[/mm] Linearformen und sei [mm]U=ker f_1 \cap ... \cap ker f_m[/mm] Zeigen Sie, dass [mm]dim_k U \ge n-m[/mm] gilt.

Ich habe diese Frage auf keiner anderen Internetseite gestellt.

Hi,
ich häng gerade bei der obrigen Aufgabe, folgendes hab ich bis jetzt:
[mm]dim_W V^{\*}= dim_W V* dim_W W=dim_w V[/mm]
Jetzt weiss ich das [mm]dim_W V=n[/mm]
und
[mm]f_m \in V^{\*}=> dim_{f_m}=dim V* = dim V= n[/mm]
Jetzt muss ich mir nur noch den Schnitt der kerne überlegen und deren Dimension kann es sein das das m ist?

Grüße,
Marie

        
Bezug
Linearformen und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mo 09.06.2008
Autor: fred97

Was Du oben schreibst ist völlig unklar.

Für ein f in V* gilt: n = dimKern(f) + dimBild(f).

Ist f=0, so ist dimKern(f) = n. Ist f ungleich 0, so ist dimKern(f) = n-1.

Hilft das ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]