matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare gleichungssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Lineare gleichungssysteme
Lineare gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 13.11.2006
Autor: SUNNY000

Hallo, ich habe ein großes problem mit einer aufgabe und weiß nicht genau, wie ich anfangen soll. Kann mir vielleicht bitte jemand auf die sprünge helfen?

(K ist ein Körper)
Untersuchen Sie für K = [mm] \IR, [/mm] ob ein lineares Gleichungssystem mit
2 Gleichungen in 3 Unbekannten über K eine Lösungsmenge mit genau 4 Elementen haben kann.
(Jeweils müssen Sie ein Beispiel eines solchen Systems angeben oder die Unmöglichkeit begründen.)

Mein Problem ist, dass mir kein vernünftiger Ansatz einfällt unglücklich

Das Problem ist hier, dass ich ja ein Beispiel finden muss, bei dem es der Fall ist oder widerlege, dass dieser Fall NIE eintreten kann.

Würde mich freuen, wenn jemand einen Ansatz für mich hätte.....


        
Bezug
Lineare gleichungssysteme: affiner Unterraum
Status: (Antwort) fertig Status 
Datum: 15:26 Di 14.11.2006
Autor: moudi

Hallo Sunny

Die Lösung eines Gleichungssystems mit Koeffizienten in K mit 3 Unbekannten aus K ist ein affiner Unterraum des [mm] $K^3$. [/mm] Wenn K ein unendlicher Körper ist, kann ein affiner Unterraum von [mm] $K^3$ [/mm] nicht genau 4 Elemente enthalten.

mfG Moudi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]