matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 10.05.2009
Autor: Mandy_90

Aufgabe
Die Vektoren [mm] \vec{a},\vec{b} [/mm] und [mm] \vec{c} [/mm] sind linear unabhängig.Zeigen Sie die lineare Unabhängigkeit von [mm] \vec{a}_{1}=\vec{a}, \vec{a}_{2}=\vec{a}+\vec{b}, \vec{a}_{3}=\vec{a}-\vec{b}+\vec{c}. [/mm]

Hallo,

Ich hab mal eine Frage zu dieser Aufgabe.Ich muss ja rechnen:

[mm] r*\vec{a}+s*(\vec{a}+\vec{b})+t*(\vec{a}-\vec{b}+\vec{c})=0 [/mm]

Wenn ich das ausmultipliziere und die Vektoren [mm] \vec{a},\vec{b} [/mm] und [mm] \vec{c} [/mm] ausklammere,erhalte ich:

1.) [mm] \vec{a}*(r+s+t)+\vec{b}*(s-t)+\vec{c}*t=0 [/mm]

Daraus ergibt sich folgendes LGS:

r+s+t=0
s-t=0
t=0

Meine Frage ist jetzt warum sich daraus dieses LGS ergibt?
Ich rechne das immer einfach so,aber deswegen hatte ich Punktabzug bekommen,weil ich nicht genau hingeschrieben hab warum man aus dem 1.) Schritt die Gleichungen folgern darf.Kann mir das jemand erklären?

Vielen Dank

lg

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 So 10.05.2009
Autor: MathePower

Hallo Mandy_90,

> Die Vektoren [mm]\vec{a},\vec{b}[/mm] und [mm]\vec{c}[/mm] sind linear
> unabhängig.Zeigen Sie die lineare Unabhängigkeit von
> [mm]\vec{a}_{1}=\vec{a}, \vec{a}_{2}=\vec{a}+\vec{b}, \vec{a}_{3}=\vec{a}-\vec{b}+\vec{c}.[/mm]
>  
> Hallo,
>  
> Ich hab mal eine Frage zu dieser Aufgabe.Ich muss ja
> rechnen:
>  
> [mm]r*\vec{a}+s*(\vec{a}+\vec{b})+t*(\vec{a}-\vec{b}+\vec{c})=0[/mm]
>  
> Wenn ich das ausmultipliziere und die Vektoren
> [mm]\vec{a},\vec{b}[/mm] und [mm]\vec{c}[/mm] ausklammere,erhalte ich:
>  
> 1.) [mm]\vec{a}*(r+s+t)+\vec{b}*(s-t)+\vec{c}*t=0[/mm]
>  
> Daraus ergibt sich folgendes LGS:
>  
> r+s+t=0
>  s-t=0
>  t=0
>  
> Meine Frage ist jetzt warum sich daraus dieses LGS ergibt?
>  Ich rechne das immer einfach so,aber deswegen hatte ich
> Punktabzug bekommen,weil ich nicht genau hingeschrieben hab
> warum man aus dem 1.) Schritt die Gleichungen folgern
> darf.Kann mir das jemand erklären?


Nun, weil [mm]\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}[/mm] linear unabhängig sind.

Und diese Vektoren sind genau dann linear unabhängig,

wenn in der Gleichung

[mm]\alpha*\overrightarrow{a}+\beta*\overrightarrow{b}+\gamma*\overrightarrow{c}=\overrightarrow{0}[/mm]

[mm]\alpha=\beta=\gamma=0[/mm] gilt.


>  
> Vielen Dank
>  
> lg


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]