matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungLineare Optimierung, Ax = b
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Optimierung" - Lineare Optimierung, Ax = b
Lineare Optimierung, Ax = b < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optimierung, Ax = b: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:56 Di 03.01.2017
Autor: Joseph95

Aufgabe
Betrachte LP in Standardform
min [mm] c^{T}x, [/mm]
  s.t. Ax = b,
       x [mm] \ge [/mm] 0.

Beweisen Sie oder geben Sie Gegenbeispiele zu den Aussagen.
i) Eine Basislösung [mm] x_{B} [/mm] ist genau dann optimal, wenn die reduzierten Kosten c' positiv sind.
ii) Zu jedem LP mit n unbeschränkten Variablen gibt es äquivalentes LP mit n+1 nicht-negativen Variablen.
A besitzt nun vollen Rang
iii) Eine Variable, die in Basis aufgenommen wurde, kann in der nächsten Iteration nicht aus der Basis entfernt werden.
iv) Es sei x* eine optimale Lösung zu der Basis B. Angenommen, es existiere eine zweitbeste zulässige Basislösung x' zur Basis B' und x [mm] \not [/mm] x'. Dann sind B und B' adjazent.


Hey Leute,

ich bräuchte nochmal eure Hilfe. Könnte mir vielleicht jemand einen Rat zur oben genannten Aufgabe gibt. Kann mir jemand vielleicht Helfen, denn ich komme gar nicht zu recht.


Viele Grüße,
Joseph95

        
Bezug
Lineare Optimierung, Ax = b: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:23 Do 05.01.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]