matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete OptimierungLineare Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Optimierung" - Lineare Optimierung
Lineare Optimierung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optimierung: Suche Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 00:10 Mi 18.04.2012
Autor: DieterT

Aufgabe
[mm] \begin{matrix} max. U; U := p \\ 150 x_a + 100 x_b -300 x_c +p \le 100 \\ -210 x_a -120 x_b + 330 x_c + G \le 110 \\ G\ge 165 \\ x_a, x_b, x_c \le 1 \\ x_a, x_b, x_c, G, p \ge 0 \end{matrix}[/mm]

Hallo,

in letzter Zeit beschäftige ich mich mit linearer Optimierung. Hauptsächlich ging es da um Allokationsprobleme, Engpässe bei der Produktion, usw., Aufgaben, die ich gerne mit dem Excel Solver löse.

Bei der vorliegenden Aufgabe weiß ich aber nicht weiter. Als "Zielfunktion" gibt es nur das "p".

Ich denke, mein Problem liegt darin, dass diese Aufgabe etwas anders aussieht als die üblichen Optimierungen. Vielleicht, weil sie nur aus Ungleichungen besteht.

Normalerweise gibt es doch eine Zielfunktion mit den veränderbaren Variablen und zudem die Restriktionen. In diesem Fall sehe ich aber nur lauter Restriktionen und keine Zielfunktion.

Muss ich die zweite Zeile nach p umformen? Dann hätte ich doch aber wieder eine Ungleichung.  

Die Lösung ist mir bekannt. Es geht mir aber darum, diese Aufgabe zu verstehen, damit ich ähnliche Aufgaben lösen kann.

p* = 100
[mm] x_a =x_b= [/mm] 1
[mm] x_c [/mm] = [mm] \bruch{5}{6} [/mm]
G = 165

Wie gesagt, ich löse Optimierungsaufgaben gerne mit dem Excel Solver. Aber hier weiß ich einfach nicht, was ich als Zielfunktion und was als "veränderbare Zellen" definieren soll. Irgendwo muss ich wohl einen dicken Denkfehler haben, oder?

Viele Grüße

D.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Mi 18.04.2012
Autor: Stoecki

die zielfunktion ist einfach nur der wert p. also [mm] f(x_a, x_b, x_c, [/mm] G, p) = p muss maximiert werden.
Im prinzip ist das eine Zielfunktion wie jede andere auch. Man bezeichnet sie jedoch als degeneriert, da sie fast keine variablen enthält.

wenn es dir hilft kannst du es aber auch als $ [mm] f(x_a, x_b, x_c, [/mm] G, p) = [mm] 0*x_a [/mm] + [mm] 0*x_b [/mm] + 0* [mm] x_c [/mm] + 0* G + 1*p $ schreiben. das würde dann wahrscheinlich ehr der form entsprechen, die du gewohnt bist. also:

max [mm] 0*x_a [/mm] + [mm] 0*x_b [/mm] + 0* [mm] x_c [/mm] + 0* G + 1*p
s.d.
[mm] \begin{matrix} 150 x_a + 100 x_b -300 x_c +p \le 100 \\ -210 x_a -120 x_b + 330 x_c + G \le 110 \\ G\ge 165 \\ x_a, x_b, x_c \le 1 \\ x_a, x_b, x_c, G, p \ge 0 \end{matrix} [/mm]

gruß bernhard

Bezug
                
Bezug
Lineare Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 18.04.2012
Autor: DieterT

Herzlichen Dank, Bernhard, für Deine Antwort, habe das alles so mit der von Dir genannten Zielfunktion im Excel Solver eingegeben und das herausbekommen, was herauskommen muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]