matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Isometrien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Lineare Isometrien
Lineare Isometrien < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Isometrien: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:18 Mo 15.09.2014
Autor: Infonerd

Aufgabe
Es sei [mm] \gamma [/mm] eine lineare Isometrie eines 4 dimensionalen euklidischen Vektorraumes mit Determinate 1.

Zeigen Sie, dass es reele Zahlen a,b gibt, sodass das characteristische Polynom von [mm] \gamma [/mm] das folgende Polynom ist

[mm] X^4+aX^3+bX^2+aX+1 [/mm]

Das Thema Isometrien wurde in der Vorlesung leider ein bisschen an Schluss gequetscht und nur so halbherzig behandelt. Dadurch hab ich jetzt keine Ahnung wie ich an so eine Aufgabe herangehen soll. Kann mir da jemand behilflich sein?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Isometrien: Antwort
Status: (Antwort) fertig Status 
Datum: 07:56 Di 16.09.2014
Autor: hippias

Ohne naehere Informationen, was genau Du bisher wissen sollst, wuerde ich Dich bitten die Definition einer Isometrie mitzuteilen und Deine Vermutung, wie das Charakteristische Polynom eines beliebigen Endomorphismuses eines $4$-dimensionalen Vektorraumes aussieht.

Bezug
                
Bezug
Lineare Isometrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Di 16.09.2014
Autor: Infonerd

Ok,
Isometrie: V,W seien normierte Vektorräume. Eine Abbildung von V--> W ist eine Isometrie wenn ||f(x) - f(y)|| = ||x-y||

eine lineare Isometrie f element End(V) lässt sich immer als Kompositionen von höchstens n Spiegelungen darstellen wenn v euklidischer Vektorraum ist



Bezug
                        
Bezug
Lineare Isometrien: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Di 16.09.2014
Autor: hippias

Alles klar. Und jetzt bitte noch meine Frage hinsichtlich des charakteristischen Polynoms beantworten.

Versuche auch die Isometriebedingung mit Hilfe des Skalarproduktes auszudruecken und finde einen Zusammenhang zwischen der Matrixdarstellung $A$ von $f$ und [mm] $A^{-1}$ [/mm] und der transponierten [mm] $A^{t}$. [/mm]

Bezug
        
Bezug
Lineare Isometrien: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Di 16.09.2014
Autor: fred97

Tipp:

Da die lineare Isometrie [mm] \gamma [/mm] ein Endomorphismus eines endlichdimensionalen Raumes V ist, ist [mm] \gamma [/mm] bijektiv. Ist [mm] \gamma^{\star} [/mm] die zu [mm] \gamma [/mm] gehörige adjungierte Abbildung, so gilt:

    [mm] $\gamma^{\star} \circ \gamma= \gamma \circ \gamma^{\star} =id_V$. [/mm]

FRED

Bezug
        
Bezug
Lineare Isometrien: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 20.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]